Genetic Algorithms

Rafael E. Banchs

INTRODUCTION

This report discusses genetic algorithms, one dagbobal search techniques to be used in the
inverse modeling of the time harmonic field electdgging problem. First, a brief description of

its fundaments is presented. Then, a more preeiserigtion of the technique and the parameters
involved in its implementation is discussed. Fipadin example is provided to illustrate the most

important properties of genetic algorithms.

FUNDAMENTSAND PROPERTIES

As their name implies, genetic algorithms are basethe real processes of natural selection and
survival of the fittest [1]. In biological populatis, individuals of every particular species are
constantly evolving and adapting to the surroundéngironment. Such an adaptation process
represents a biological analogy of the mathemaftprablem of maximizing an objective

function, which in the case of genetics algorithsnseferred as the fithess function.

In genetic algorithms, a set of artificial indivaala (models) are used to define a population, and
as in the case of biological systems, some geirgtcmation is transmitted from generation to
generation by a relatively simple set of combinataules. While this evolution is taking place,
the process of natural selection ensures that ithestf individuals are the ones with more
probability of transmitting their genetic informanti. In this way, with the running of time, the
individuals and the population are able to get nao@ more adapted to the environment; even if

the environment itself changes with time.

The implementation of genetic algorithms requites $ub-codification of the model parameter
space into a finite set of finite-length stringseTstring, or group of strings, corresponding to a
given model represents the genotype of the indalidwhile the model or individual itself
represents the phenotype. According to the compi@Xithe problem, or the coding system, the
strings in the genotype can be subdivided into mimsomes, which are composed by genes.
Each of the single elements or characters of agsis called an allele and its position in the
string is its locus. As it is explained later, etparticular examples considered along the present
work, the terms gene and allele will be equivalentwever, under more sophisticated

codification schemes a gene can be composed bytimameone allele [2].

In the evolution of the algorithm, the individuatd a given population interchange their
genotypes, according to their fitness values amdesprobabilistic transition rules, in order to
produce a new generation. In this context, theativje function or fitness function provides an
artificial selection criterion for giving to the &t adapted individuals a higher chance to

reproduce.

One of the most important properties of genetigerhms is the robustness due to its parallel
nature of search. As it is constantly searchingnfi population of models, instead of a single
model, it has the capacity of performing a moreeesive evaluation of the model space. In this
way, as global search techniques in general, i dm¢ present the problem of getting stuck in
local minima. Also, despite the stochastic naturéhe reproduction rules, it performs a guided
search since the artificial selection criterionided by the fitness function provides directivity

behind the apparent randomness. So, there is rat tlvat the most attractive feature of genetic
algorithms is that, regardless they relative sioigylj they constitute a very powerful and robust

searching technique.

Nevertheless, there is a simple but important difiee between biological systems and artificial
genetic algorithms, which actually represents tha@nndisadvantage of this kind of searching

techniques. That is the fact that, while nature d&@asternity (or at least billions of years) for

playing the game of evolution, we certainly do notleed, genetic algorithms are in general very

slow and computationally expensive.

THE SSIMPLE GENETIC ALGORITHM

The most simple genetic algorithm can be descridmdollows. First, it starts with a certain
population of individuals selected at random frdra model space. Then, an iterative procedure
follows, in which each of its iterations is compod® three basic steps: selection, crossover and

mutation. Finally, the algorithm is stopped whertae convergence criterion is achieved.

1.- Selection.

In this step, individuals are selected for cross@gseording to their relative fitness with respect

to the others in the population. In this way, thosBviduals whose fithess values are above the
population’s average fitness will have more chawceeproduce than those whose fitness values
are below the average. This selection step is im@hged in practice by the creation of a mating

pool. In the mating pool, certain amount of comégach individual are placed according to its

relative fitness. Figure 1 illustrates the matimplpcorresponding to the presented population of

five individuals.

Individual | Raw fitnes %_fitness Capip Mating Pool
1 25 37.9 2 1
2 4 6.1 0 t 1
3 10 15.2 1 — 3
4 15 22.7 1 — 4
5 12 18.1 1 —> 5
66 100.0

Figure 1: Selection by means of a mating pool.

The use of the mating pool resource permits theotiseuniformly distributed random generator
during the step of crossover. However, in more demmplementations, it is always possible to

combine selection and crossover in a single stegsing a properly biased random generator.

2.- Crossover.

In this step, the genetic material of the individua the mating pool is recombined in order to
produce a new generation. First, the individua¢éspacked in pairs from the mating pool. This is
done uniformly at random. Then, for each pairs itiecided if crossover is going to be performed
or not according to some probability, pvhich is called the crossover probability. If crossover

is required, both individuals are included justtiasy are in the new generation. On the other
hand, if crossover is to be performed, their gepetyare used to generate a new pair of

individuals. Figure 2 shows two different typescofssover schemes.

As it can be seen from Figure 2, in simple crossawee locus is selected at random dividing the
strings in two sections. Then, the alleles in coeasponding pair of sections are interchanged
between the strings. In multiple crossover, moaatbne locus is selected at random dividing the

strings in multiple sections. Then, correspondiog nonsecutive pairs of sections are swapped.

Parents Offspring

Al Bl V]Gl H] T| A Simple Al B| V| A] B| R| V
. e —
- crossover
Gl T|T|:Al Bl R| V Gl T{T|G|H|T|A
Parents Offspring

AlBl Vvl cliH] TLA] Mutiple [A]TI T AR T]V

1 1 1 %
T T T crossover

Figure 2: Simple and multiple crossover schemes.

There exist much more complex crossover and genetltng schemes than the ones illustrated
in Figure 2. Such is the case of diploid and twial forms of genotype that allows
implementation of dominance and abeyance [2]. Haweas it will be discussed later, the

schemes presented in Figure 2 are suitable enaughe problem under consideration.

3.- Mutation.

In this step, some random alterations are perfortmeélde genotypes of the individuals in the new
generation. This is done according to certain goditya pm, the mutation probability. In general,
pm must be a very small value, such that the ordealtefations would be around one in every
thousand alleles. For every individual in the pagioh, it is decided if a mutation must occur or
not. Then, if it must occur, one locus is selecedandom, and the value of its correspondent

allele is altered.

In both, real life and genetic algorithms, mutatmays the very important function of avoiding

irrecoverable losses of genetic material. If foamyple, the evolution of a population occurs in

5

such a way that at a given generation all the iddals have the same allele at certain locus. It is
impossible, by means of the simple procedures tbestbefore (of course this is not the case for
more sophisticated schemes), for such an allelehtmge ever again. In this way, mutation

provides the possibility of recovering the genédiiersity for that particular allele.

A BRIEF MATHEMATICAL ANALYSIS

A more rigorous analysis of genetic algorithms barperformed by studying how the three basic
operations of selection, crossover and mutatioecaffertain genetic structure or patterns called

schemata [2]. Each pattern or schema represefisatsof models in the coded space.

Let us consider, for simplicity, a coding systemattises the binary alphabet {0,1}. Then the
associated patterns to the given problem will ppegented with the triadic alphabet {0, 1, X};

where the symbol X stands for a “don’t care” chtgathat can be either 0 or 1. In this way, in
the case of strings of size 6, the pattern or seh&XX0XX represents the subset of all the
individuals of the population whose genotype israbterized by having a “1” in the 1st locus

and a “0” in the 4th locus. Two important parametef patterns must be defined. They are its
order and its distance. The first is given by thenber of non-X characters in it. The second is
defined by the distance between the two outermastX characters in the string. Then, for the

example provided above the order is 2 and theruistas 3.

Now, let us consider how different patterns or sthia are affected during one iteration of the
genetic algorithm execution. During selection, tasas seen before, a particular individxalis
picked with probability:

p(R,) =l 1)

> F&,)

where F(X,) is the fitness of the nth individual and M is tige of the population. Then, the

expected amount of a particular pattern A in tiseiiteng mating pool will be:

Vi, vf
A M Ma —mAu

ZF(X) avf

A pool (2)
where m, represents the amount of patterns A present inptilation, avfis the average
fitness of the population, aralf, is the average fithess among all individuals bgilog to the

subset defined by pattern A.

Next, during crossover, something interesting happ&or simplicity, let us only consider the
case of simple crossover. Depending on the lodestee for cutting, a pattern may be broken or

not. The probability of a given pattern A to ‘sw®i crossover is given by:

pu(A) 21-p,)

where p, is the crossover probability, d(A) is the distané@attern A and N is the total number

®3)

of locus in the genotype (size of the string). Heare notice that, depending on the genetic
contents provided by the other parent, there exastsmall possibility for pattern A to be

recovered after crossover; for this reason (3gfsndd by means of an inequality.

In a less extent than crossover, mutation may @stroy patterns. The probability of a given
pattern A to ‘survive’ mutation is given by:

Pnl(A) = L=p,)" " 4
where p,, is the mutation probability and o(A) is the ordépattern A. In practice, the values of
the mutation probability a much more smaller thasd] (4) can be approximated by:

Psn(A) = 1-p, 0(A) ®)

Now, by combining the effects of selection, crosoand mutation, an estimate for the number
of individuals associated to pattern A can be camemhut is given by the following expression:

. avf, [d(A)
> —A 1-
Ma =Mt 17 PNt

o(A)} (6)

Notice from (6) that the estimated number of comégattern A in the next generation is
basically determined by the amount of copies ingitesent generation multiplied by two factors.
The first factor is defined by a ratio of averagebjch can be either greater or smaller than 1
depending on the average fitness of the individaatociated to pattern A. The second factor is
defined by the algorithm probabilities and the joatar characteristics of pattern A. This factor
will be always smaller than the unit. However, itl\we closer to 1 for patterns exhibiting small
values of distance and order, while it will be eoso zero for patterns with large values of

distance and order.

From the previous analysis, it can be concludetl ttiea patterns with more chance to stay and
multiply after successive generations, are those¢ satisfy both of the following conditions.

First, they have to be compact; i.e. must exhibitlé order and small distance. Second, they
have to be highly fitted; i.e. must be associatethtlividuals presenting an over-average fithess

value. Such a kind of patterns, that satisfy bathditions, are called “building blocks” [2].

In this way, such building blocks constitutes tlssesce of genetic algorithms’ performance.
This is explained by the so called Building Blockypdthesis, which sustains that the

convergence of genetic algorithms to the globainmtn relays on the capacity of the adopted
coding scheme to represent the best models in tefrbsilding blocks. In other words, if the

coding system is such that the best fitted indiglduare composed by building blocks; then,
according to (6), the algorithm will certainly fitthem and relatively fast. At this point, it is

important to mention that in practice, the problehadesigning an appropriate coding scheme can
be as difficult as the optimization problem itséffowever, this situation does not represent a
actual trouble since, in most of the genetic athans’ applications, deceptive problems are not
usually hard. This is due to their robustness amdlfel-processing nature. In the most typical
situations, inappropriate coding schemes will regulslower rates of convergence and more

computational burden.

GENETIC ALGORITHMSAND THE THFEL PROBLEM

Among the most important aspects in the implemanmtadf genetic algorithms for solving an
specific problem are the selection of an approprading scheme, the definition of the fithess

function and the selection of the stopping criterio

In the particular case of the time harmonic fidectic logging problem (THFEL), the model is
given by a set of logarithmic conductivities asitlescribed in [3]. The multiparameter nature of
this problem then requires a coding scheme ableepyesent such a model space. One
recommended scheme is the concatenated codingdeehmvhich has been successfully used in
multivariable optimization problems [2]. In this h@ame, each parameter of the model is
independently coded by using a conventional bimagp of Nx bits. Then, all the coded
parameters are concatenated together to form ting sir genotype with a total length of M*Nx

alleles; where M is the total number of zones amfhrmation.

In the implemented application, two different typesbinary codes can be used. They are the
unsigned binary code and the gray code. The raggesented by the codes [0, 2”n] is then

mapped into the interval %] which represents the permissible values for thameters

-max’xmax
of the logarithmic conductivity modé&. The resolution of the code is given by:

X
A, = (7)

Then, for a typical value of = 9.21 ¢ = 104 S/m), a representation of 10 bits per patam
will result in a resolution of about, = 0.0179 Ao = 0.017%; about 2% of).

Another important aspect is the definition of titedss function. For the same reasons presented
in [3], we consider that the mean square erroresgts a good alternative to be used in the
implementation of the method. However, as it wagamly mentioned, genetic algorithms
constitute a maximization technique rather thaniaimzation one, but this problem can be

easily solved by modifying the error function wéh appropriate transformation.

Although the most simple way of doing so is by dyngonsidering the negative of the error
function, genetic algorithms require strictly post fitness function. More suitable

transformations are provided by the following desioms:

_ A
P = In (kE(X)+€) ®
F (%) = A exp(-k E(X)) (9)

whereF(X) represents the fitness function, A and k are spraalefined scaling constants; and
E(X) is the mean square error defined by (1) in [3]atternatively, its normalized version
defined by (5) in [3].

The last consideration is related to the stoppinigroon. Here, the most appropriate criterion
will depend on the type of search under considanain the case of hybrid search, in which the
objective is to provide the local search algoritinth a good starting model, a much more
relaxed stopping criterion can be used. On therdtlhad, when stand alone global search is

intended a more careful criterion must be constlererder to obtain the desired accuracy.

A typical stopping criterion in genetic algorithmsto wait until no significant variations are
appreciated in the average fitness of the populatitowever, special care must be exercised
with genetic algorithms. This is because they hayarticular tendency, after running for long
time, to sacrifice best fittest individuals in b#haf the average population. Although this
problem can be corrected by the use of fitnessmgrechniques, which are discussed in the next
section; it is a good practice to keep always tragkf the best individual during the evolution of

the algorithm.

IMPROVEMENTSTO THE BASIC ALGORITHM

10

In this section, additional features and variatiohthe simple genetic algorithm described before
are described. The use of these options can halprusome circumstances to improve the

general performance of the inversion procedure.

1.- Fitness Scaling.

As it was already mentioned in the previous sectiafter running for long time, genetic
algorithms have a particular tendency to sacrifiest fittest individuals in behalf of the average
population. This happens because, after running ldog time, the population is more
homogeneous and the average fithess is very ctosieetbest fithess value. This gives to the
majority more chances to reproduce than the bdstiduals. In order to avoid this problem, the
fitness value can be scaled in such a way thabése¢ individual is guaranteed to have some

small advantage over the average individual.

1.a.- Linear scaling.

One common scaling technique, is the linear scalinig done in the following way:
F.(X) __at [(k DF(X)+mxf -k avf] (10)

where F(X) is the scaled fitnes$;(X) is the raw fitness, avf is the average raw fithessf is
the best raw fitness and k is the scaling paraméter formula in (10) has been computed in
such a way that the average fitness remains uneldaafier the scaling is perform, and the

maximum fitness becomes k times the average. A camvalue for k is 2.

Although, the linear scaling as defined in (10)vsslthe problem described before, it introduces
the potential problem that after scaling, someh&f $mallest fitness can result into negative
values. This new problem can be solved in threesw@ye is by changing the linear scaling in

such a way that the minimum fitness is scaled to.28y doing so, the following is obtained:

F.(X) = ———— [F(X) - mnf] (11)

avf mnf

where mnf is the minimum raw fitness value.

11

Another alternative, is performing a simple trummatin which all the negative scaled values are
arbitrarily made zero. The last and more convergdternative is the so called sigma truncation
[4]. In this last procedure, the constant (avf-s&d3ubtracted from the raw fitnes$X) ; where
avf is the average raw fitness and std is the stahdeviation of the raw fitness. After the
subtraction, a normal linear scaling is completgdising (10); and finally, simple truncation is

performed.

1.b.- Power Law Scaling.

In this scheme, the scaled fithess is compute@idaic power of the raw fitness:

F, (%) = FX)" (12)

and although the value of k is generally problerpeshelent, the values of 1.005 has been proved

to work properly in some experimentation [5].

2.- Variable Population Size and Overlapped Pojmrlat

In a variable population scheme, a variation ofgbpulation’s size is permitted with probability
pvar, at every generation. Once the variation occugdra/e been determined according\ar,p
one operation between increment or reduction iscsedl. Then, the siz& of the variation is
randomly computed between 1 and 10% of the totpuladion size. In the case of incremeft,
new individuals are added to the existent populatio the case of decrementjndividuals are
removed from the existent population. These adaedramoved individuals cam be selected at

random or by following certain fitness related emibn.

In the case of overlapped populations [6], the sfzmating pool is taken to be a certain fraction
of the population size K. The amount of overlappmgefined by the overlapping parameter g.
A value of g = 0, produces no overlapping and tineent generation is totally replaced by its
offspring. On the other hand, g = 1 would produc®tal overlap, which means that no new

generation is computed. Then, g must be defingdarnnterval [0, 1).

3.- Forced Diversity.

12

It is intended to avoid the collapse of an entwpydation into multiple copies of few individuals.
This is common when the computational cost of éiqdar problem forces the use of relatively

small populations. Diversity can be achieved by sivople ways described next.

3.a.- Incremented mutations.
Here, when the minimum and maximum fithess valuesrelatively close to each other, the
mutation probability is multiplied by a large numbén this way, more genetic diversity is

introduced when the population is becoming more deneous.

3.b.- Limited number of copies per generation.
In this scheme, the total number of copies thatdiqular individual can have is restricted.
When the resulting genotype from a crossover isadly in the population, a new crossover is

performed or a new individual is generated at ramdo

Notice that the use of high diversity parametersnrall populations turns the search more close

to a random walk.

AN ILLUSTRATIVE EXAMPLE

The present section illustrates with a simple exXantpe most important features of genetic

algorithms. Two functions are considered in thengpia:

f,(X) :% (x—3y (13)
f,(x)= % Cos@—g (x - 1)) (14)

where x represents an unidimensional model spalciehwis coded as an unsigned binary string
of 10 bits mapped into the interval -16:& < 10.0.

The inversion data set is defined as:

13

m' =[m m,]=[@) f,M)]=[1 1/7] (15)

And the fitness function is defined as by:
F() = exp{2 (.00 @) + (.00 -1,)]} (16)

whose global maximum is located al x = 1, and pressa local maximum at x = 5.1.

Figure 3 illustrates the evolution of a fixed sp&pulation of 40 individuals. In this particular
simulation no overlap was used, the crossover jmibtyawas 0.85 and the mutation probability
was 0.001 with and incremental factor of 50. LinBaress scaling with sigma truncation was

used, and the individual number of copies per geitar was restricted to 4.
Six plots corresponding to the original populatimmd generations 15, 30, 45, 60 and 75 are

presented. The plots illustrates the fitness fmctand the fitness values of each of the

individuals in the population.

14

08 |
06 [
04 [

02 |

1.2..... r—p—— yrp——

0.8
0.6 |
0.4

02 p

Original Population

Figure 3: Evolution of a genetic algorithm.

15

0.8 |
06 [
04 [

02 |

1.2..... T

08 |
06 |
04 |

02 |

30th generation

O:"-\;

Figure 3: Evolution of a genetic algorithm. (Coniition)

16

02 p

08

02 p

17

Figure 3: Evolution of a genetic algorithm. (Coniition)

From Figure 3, it can be observed how after stgfiiom a uniformly distributed population the
individuals tend to gather around the picks of theess function. This represents a very
important property of the genetic algorithms. Doéheir parallel nature of search, they have the
ability of simultaneously locate different maximeaeo the fithess function surface. Notice how
during the 30th generation the population is bédlgickvided in two sub-populations, one around
the global maximum and the other around the locakimum. From this point, some kind of
confrontation between those sub-populations seerbgdin. Indeed, notice how the diversity is
notoriously increased at population 45. Finallyitagas expected, the algorithm converges to the

correct solution.

This example also illustrates the computationanisity of this technique. For a population of 40
individuals evolving during 75 generations, a tahB000 function evaluations where required.
In practice, the total number of function evaluatia@an be reduced a little bit by generating a

table of repeated individuals.

CONCLUSIONS

Genetic algorithms constitute an important familglobal searching technique. Among its most
important properties are their robustness and leagalocessing capacity. However, as global
search methods in general, their intensive comiouiat requirements and very slow

convergence characteristics are factors that reitsipetentiality in many cases.

In the particular case of the time harmonic fieldctic logging problem, in which function

evaluations are computationally expensive, theilidag of this technique depends basically on

18

the availability time. As in the case of simulatathealing, genetic algorithms are better suited

for hybrid optimization schemes than for an stalod@ global optimization.

REFERENCES

[1] Holland, J. (1975), Adaptation in Natural andificial Systems.

Ann Arbor: The University of Michigan Press.

[2] Goldberg, D. (1989), Genetic Algorithm#ddison Wesley.

[3] Update Report #13: Gradient Methods.

[4] Forrest, S. (1985), Documentation for PRISONHRBEMMA and NORMS Programs
that Use the Genetic Algorithpniversity of Michigan, Ann Arbor.

[5] Gillies, A. (1985), Machine Learning Procedufes Generating Image Domain Feature

Detectors.University of Michigan, Ann Arbor.

[6] De Jong, K. (1975), An Analysis of the Behavidra Class of Genetic Adaptive Systems

University of Michigan, Ann Arbor.

19

