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INTRODUCTION 

 

This report discusses genetic algorithms, one class of global search techniques to be used in the 

inverse modeling of the time harmonic field electric logging problem. First, a brief description of 

its fundaments is presented. Then, a more precise description of the technique and the parameters 

involved in its implementation is discussed. Finally, an example is provided to illustrate the most 

important properties of genetic algorithms. 

 

 

FUNDAMENTS AND PROPERTIES 

 

As their name implies, genetic algorithms are based on the real processes of natural selection and 

survival of the fittest [1]. In biological populations, individuals of every particular species are 

constantly evolving and adapting to the surrounding environment. Such an adaptation process 

represents a biological analogy of the mathematical problem of maximizing an objective 

function, which in the case of genetics algorithms is referred as the fitness function. 

 

In genetic algorithms, a set of artificial individuals (models) are used to define a population, and 

as in the case of biological systems, some genetic information is transmitted from generation to 

generation by a relatively simple set of combinatorial rules. While this evolution is taking place, 

the process of natural selection ensures that the fittest individuals are the ones with more 

probability of transmitting their genetic information. In this way, with the running of time, the 

individuals and the population are able to get more and more adapted to the environment; even if 

the environment itself changes with time. 
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The implementation of genetic algorithms requires the sub-codification of the model parameter 

space into a finite set of finite-length strings. The string, or group of strings, corresponding to a 

given model represents the genotype of the individual, while the model or individual itself 

represents the phenotype. According to the complexity of the problem, or the coding system, the 

strings in the genotype can be subdivided into chromosomes, which are composed by genes. 

Each of the single elements or characters of a string is called an allele and its position in the 

string is its locus. As it is explained later, in the particular examples considered along the present 

work, the terms gene and allele will be equivalent; however, under more sophisticated 

codification schemes a gene can be composed by more than one allele [2]. 

 

In the evolution of the algorithm, the individuals of a given population interchange their 

genotypes, according to their fitness values and some probabilistic transition rules, in order to 

produce a new generation. In this context, the objective function or fitness function provides an 

artificial selection criterion for giving to the best adapted individuals a higher chance to 

reproduce. 

 

One of the most important properties of genetics algorithms is the robustness due to its parallel 

nature of search. As it is constantly searching from a population of models, instead of a single 

model, it has the capacity of performing a more extensive evaluation of the model space. In this 

way, as global search techniques in general, it does not present the problem of getting stuck in 

local minima. Also, despite the stochastic nature of the reproduction rules, it performs a guided 

search since the artificial selection criterion defined by the fitness function provides directivity 

behind the apparent randomness. So, there is no doubt that the most attractive feature of genetic 

algorithms is that, regardless they relative simplicity, they constitute a very powerful and robust 

searching technique. 

 

Nevertheless, there is a simple but important difference between biological systems and artificial 

genetic algorithms, which actually represents the main disadvantage of this kind of searching 

techniques. That is the fact that, while nature has an eternity (or at least billions of years) for 
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playing the game of evolution, we certainly do not. Indeed, genetic algorithms are in general very 

slow and computationally expensive. 

 

 

THE SIMPLE GENETIC ALGORITHM 

 

The most simple genetic algorithm can be described as follows. First, it starts with a certain 

population of individuals selected at random from the model space. Then, an iterative procedure 

follows, in which each of its iterations is composed by three basic steps: selection, crossover and 

mutation. Finally, the algorithm is stopped when certain convergence criterion is achieved. 

 

1.- Selection. 

In this step, individuals are selected for crossover according to their relative fitness with respect 

to the others in the population. In this way, those individuals whose fitness values are above the 

population’s average fitness will have more chance to reproduce than those whose fitness values 

are below the average. This selection step is implemented in practice by the creation of a mating 

pool. In the mating pool, certain amount of copies of each individual are placed according to its 

relative fitness. Figure 1 illustrates the mating pool corresponding to the presented population of 

five individuals.  
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Figure 1: Selection by means of a mating pool. 

 

The use of the mating pool resource permits the use of a uniformly distributed random generator 

during the step of crossover. However, in more complex implementations, it is always possible to 

combine selection and crossover in a single step by using a properly biased random generator. 

 

2.- Crossover. 

In this step, the genetic material of the individuals in the mating pool is recombined in order to 

produce a new generation. First, the individuals are picked in pairs from the mating pool. This is 

done uniformly at random. Then, for each pair, it is decided if crossover is going to be performed 

or not according to some probability pc, which is called the crossover probability. If no crossover 

is required, both individuals are included just as they are in the new generation. On the other 

hand, if crossover is to be performed, their genotypes are used to generate a new pair of 

individuals. Figure 2 shows two different types of crossover schemes. 

 

As it can be seen from Figure 2, in simple crossover, one locus is selected at random dividing the 

strings in two sections. Then, the alleles in one corresponding pair of sections are interchanged 

between the strings. In multiple crossover, more than one locus is selected at random dividing the 

strings in multiple sections. Then, corresponding non consecutive pairs of sections are swapped. 
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Figure 2: Simple and multiple crossover schemes. 

 

There exist much more complex crossover and genetic coding schemes than the ones illustrated 

in Figure 2. Such is the case of diploid and triallelic forms of genotype that allows 

implementation of  dominance and abeyance [2]. However, as it will be discussed later, the 

schemes presented in Figure 2 are suitable enough for the problem under consideration. 

 

3.- Mutation. 

In this step, some random alterations are performed to the genotypes of the individuals in the new 

generation. This is done according to certain probability pm, the mutation probability. In general, 

pm must be a very small value, such that the order of alterations would be around one in every 

thousand alleles. For every individual in the population, it is decided if a mutation must occur or 

not. Then, if it must occur, one locus is selected at random, and the value of its correspondent 

allele is altered. 

 

In both, real life and genetic algorithms, mutation plays the very important function of avoiding 

irrecoverable losses of genetic material. If for example, the evolution of a population occurs in 
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such a way that at a given generation all the individuals have the same allele at certain locus. It is 

impossible, by means of the simple procedures described before (of course this is not the case for 

more sophisticated schemes), for such an allele to change ever again. In this way, mutation 

provides the possibility of recovering the genetic diversity for that particular allele. 

 

 

A BRIEF MATHEMATICAL ANALYSIS  

 

A more rigorous analysis of genetic algorithms can be performed by studying how the three basic 

operations of selection, crossover and mutation affect certain genetic structure or patterns called 

schemata [2]. Each pattern or schema represent a subset of models in the coded space.  

 

Let us consider, for simplicity, a coding system that uses the binary alphabet {0,1}. Then the 

associated patterns to the given problem will be represented with the triadic alphabet {0, 1, X}; 

where the symbol X stands for a “don’t care” character that can be either 0 or 1. In this way, in 

the case of strings of size 6, the pattern or schema 1XX0XX represents the subset of all the 

individuals of the population whose genotype is characterized by having a “1” in the 1st locus 

and a “0” in the 4th locus. Two important parameters of patterns must be defined. They are its 

order and its distance. The first is given by the number of non-X characters in it. The second is 

defined by the distance between the two outermost non-X characters in the string. Then, for the 

example provided above the order is 2 and the distance is 3. 

 

Now, let us consider how different patterns or schemata are affected during one iteration of the 

genetic algorithm execution. During selection, as it was seen before, a particular individual x i  is 

picked with probability: 

p(x i ) =
F(x i )

F(x k )
k =1

M

∑
 (1) 

where F(x n)  is the fitness of the nth individual and M is the size of the population. Then, the 

expected amount of a particular pattern A in the resulting mating pool will be: 
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mA _ pool = mA M
avfA

F(x k )
k =1

M

∑
= mA

avfA
avf

 (2) 

where mA  represents the amount of patterns A present in the population, avf is the average 

fitness of the population, and avfA  is the average fitness among all individuals belonging to the 

subset defined by pattern A. 

 

Next, during crossover, something interesting happens. For simplicity, let us only consider the 

case of simple crossover. Depending on the locus selected for cutting, a pattern may be broken or 

not. The probability of a given pattern A to ‘survive’ crossover is given by: 

psc(A) ≥ 1− pc

d(A)

N −1
 (3) 

where pc  is the crossover probability, d(A) is the distance of pattern A and N is the total number 

of locus in the genotype (size of the string). However, notice that, depending on the genetic 

contents provided by the other parent, there exists a small possibility for pattern A to be 

recovered after crossover; for this reason (3) is defined by means of an inequality. 

 

In a less extent than crossover, mutation may also destroy patterns. The probability of a given 

pattern A to ‘survive’ mutation is given by: 

psm(A) = (1− pm)o(A)  (4) 

where pm  is the mutation probability and o(A) is the order of pattern A. In practice, the values of 

the mutation probability a much more smaller than 1; so, (4) can be approximated by: 

psm(A) ≈ 1− pm o(A) (5) 

 

Now, by combining the effects of selection, crossover and mutation, an estimate for the number 

of individuals associated to pattern A can be computed. It is given by the following expression: 

mA
+ ≥ mA

avfA
avf

1− pc

d(A)

N −1
− pm o(A) 

 
 
 
 (6) 
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Notice from (6) that the estimated number of copies of pattern A in the next generation is 

basically determined by the amount of copies in the present generation multiplied by two factors. 

The first factor is defined by a ratio of averages, which can be either greater or smaller than 1 

depending on the average fitness of the individuals associated to pattern A. The second factor is 

defined by the algorithm probabilities and the particular characteristics of pattern A. This factor 

will be always smaller than the unit. However, it will be closer to 1 for patterns exhibiting small 

values of distance and order, while it will be closer to zero for patterns with large values of 

distance and order. 

 

From the previous analysis, it can be concluded that the patterns with more chance to stay and 

multiply after successive generations, are those that satisfy both of the following conditions. 

First, they have to be compact; i.e. must exhibit small order and small distance. Second, they 

have to be highly fitted; i.e. must be associated to individuals presenting an over-average fitness 

value. Such a kind of patterns, that satisfy both conditions, are called “building blocks” [2].  

 

In this way, such building blocks constitutes the essence of genetic algorithms’ performance. 

This is explained by the so called Building Block Hypothesis, which sustains that the 

convergence of genetic algorithms to the global optimum relays on the capacity of the adopted 

coding scheme to represent the best models in terms of building blocks. In other words, if the 

coding system is such that the best fitted individuals are composed by building blocks; then, 

according to (6), the algorithm will certainly find them and relatively fast. At this point, it is 

important to mention that in practice, the problem of designing an appropriate coding scheme can 

be as difficult as the optimization problem itself. However, this situation does not represent a 

actual trouble since, in most of the genetic algorithms’ applications, deceptive problems are not 

usually hard. This is due to their robustness and parallel-processing nature. In the most typical 

situations, inappropriate coding schemes will result in slower rates of convergence and more 

computational burden. 
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GENETIC ALGORITHMS AND THE THFEL PROBLEM 

 

Among the most important aspects in the implementation of genetic algorithms for solving an 

specific problem are the selection of an appropriate coding scheme, the definition of the fitness 

function and the selection of the stopping criterion. 

 

In the particular case of the time harmonic field electric logging problem (THFEL), the model is 

given by a set of logarithmic conductivities as it is described in [3]. The multiparameter nature of 

this problem then requires a coding scheme able to represent such a model space. One 

recommended scheme is the concatenated coding technique, which has been successfully used in 

multivariable optimization problems [2]. In this scheme, each parameter of the model is 

independently coded by using a conventional binary map of Nx bits. Then, all the coded 

parameters are concatenated together to form the string or genotype with a total length of M*Nx 

alleles; where M is the total number of zones in the formation. 

 

In the implemented application, two different types of binary codes can be used. They are the 

unsigned binary code and the gray code. The range represented by the codes [0, 2^n] is then 

mapped into the interval [-xmax,xmax] which represents the permissible values for the parameters 

of the logarithmic conductivity model x . The resolution of the code is given by: 

∆ x =
xmax

2(Nx −1)  (7) 

Then, for a typical value of xmax = 9.21 (σ = 10^4 S/m), a representation of 10 bits per parameter 

will result in a resolution of about ∆ x  = 0.0179  (∆σ = 0.0179 σ; about 2% of σ). 

 

Another important aspect is the definition of the fitness function. For the same reasons presented 

in [3], we consider that the mean square error represents a good alternative to be used in the 

implementation of the method. However, as it was already mentioned, genetic algorithms 

constitute a maximization technique rather than a minimization one, but this problem can be 

easily solved by  modifying the error function with an appropriate transformation.  
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Although the most simple way of doing so is by simply considering the negative of the error 

function, genetic algorithms require strictly positive fitness function. More suitable 

transformations are provided by the following definitions: 

F(x ) =
A

ln k E(x ) + e( ) (8) 

F(x ) = A exp −k E(x )( ) (9) 

where F(x )  represents the fitness function, A and k are some pre-defined scaling constants; and 

E(x ) is the mean square error defined by (1) in [3], or alternatively, its normalized version 

defined by (5) in [3]. 

 

The last consideration is related to the stopping criterion. Here, the most appropriate criterion 

will depend on the type of search under consideration. In the case of hybrid search, in which the 

objective is to provide the local search algorithm with a good starting model, a much more 

relaxed stopping criterion can be used. On the other hand, when stand alone global search is 

intended a more careful criterion must be considered in order to obtain the desired accuracy. 

 

A typical stopping criterion in genetic algorithms is to wait until no significant variations are 

appreciated in the average fitness of the population. However, special care must be exercised 

with genetic algorithms. This is because they have a particular tendency, after running for long 

time, to sacrifice best fittest individuals in behalf of the average population. Although this 

problem can be corrected by the use of fitness scaling techniques, which are discussed in the next 

section; it is a good practice to keep always tracking of the best individual during the evolution of 

the algorithm. 

 

IMPROVEMENTS TO THE BASIC ALGORITHM 
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In this section, additional features and variations of the simple genetic algorithm described before 

are described. The use of these options can help under some circumstances to improve the 

general performance of the inversion procedure.  

 

1.- Fitness Scaling. 

As it was already mentioned in the previous section, after running for long time, genetic 

algorithms have a particular tendency to sacrifice best fittest individuals in behalf of the average 

population. This happens because, after running for long time, the population is more 

homogeneous and the average fitness is very close to the best fitness value. This gives to the 

majority more chances to reproduce than the best individuals. In order to avoid this problem, the 

fitness value can be scaled in such a way that the best individual is guaranteed to have some 

small advantage over the average individual. 

 

1.a.- Linear scaling. 

One common scaling technique, is the linear scaling. It is done in the following way: 

Fs (x ) =
avf

mxf − avf
k −1( )F(x )+ mxf − k avf[ ] (10) 

where Fs (x ) is the scaled fitness, F(x )  is the raw fitness, avf is the average raw fitness, mxf is 

the best raw fitness and k is the scaling parameter. The formula in (10) has been  computed in 

such a way that the average fitness remains unchanged after the scaling is perform, and the 

maximum fitness becomes k times the average. A common value for k is 2.  

 

Although, the linear scaling as defined in (10) solves the problem described before, it introduces 

the potential problem that after scaling, some of the smallest fitness can result into negative 

values. This new problem can be solved in three ways. One is by changing the linear scaling in 

such a way that the minimum fitness is scaled to zero. By doing so, the following is obtained: 

Fs (x ) =
avf

avf − mnf
F(x )− mnf[ ] (11) 

where mnf is the minimum raw fitness value.  
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Another alternative, is performing a simple truncation, in which all the negative scaled values are 

arbitrarily made zero. The last and more convenient alternative is the so called sigma truncation 

[4]. In this last procedure, the constant (avf-std) is subtracted from the raw fitness F(x ) ; where 

avf is the average raw fitness and std is the standard deviation of the raw fitness. After the 

subtraction, a normal linear scaling is completed by using (10); and finally, simple truncation is 

performed. 

 

1.b.- Power Law Scaling. 

In this scheme, the scaled fitness is computed as certain power of the raw fitness: 

Fs (x ) = F(x )k  (12) 

and although the value of k is generally problem-dependent, the values of 1.005 has been proved 

to work properly in some experimentation [5].  

 

2.- Variable Population Size and Overlapped Populations. 

In a variable population scheme, a variation of the population’s size is permitted with probability 

pvar, at every generation. Once the variation occurrence have been determined according to pvar, 

one operation between increment or reduction is selected. Then, the size ∆ of the variation is 

randomly computed between 1 and 10% of the total population size. In the case of increment, ∆ 

new individuals are added to the existent population. In the case of decrement, ∆ individuals are 

removed from the existent population. These added and removed individuals cam be selected at 

random or by following certain fitness related criterion. 

 

In the case of overlapped populations [6], the size of mating pool is taken to be a certain fraction 

of the population size K. The amount of overlapping is defined by the overlapping parameter g. 

A value of g = 0, produces no overlapping and the current generation is totally replaced by its 

offspring. On the other hand, g = 1 would produce a total overlap, which means that no new 

generation is computed. Then, g must be defined in the interval [0, 1). 

 

3.- Forced Diversity. 
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It is intended to avoid the collapse of an entire population into multiple copies of few individuals. 

This is common when the computational cost of a particular problem forces the use of relatively 

small populations. Diversity can be achieved by two simple ways described next. 

 

3.a.- Incremented mutations. 

Here, when the minimum and maximum fitness values are relatively close to each other, the 

mutation probability is multiplied by a large number. In this way, more genetic diversity is 

introduced when the population is becoming more homogeneous. 

 

3.b.- Limited number of copies per generation. 

In this scheme, the total number of copies that a particular individual can have is restricted. 

When the resulting genotype from a crossover is already in the population, a new crossover is 

performed or a new individual is generated at random.  

 

Notice that the use of high diversity parameters in small populations turns the search more close 

to a random walk. 

 

 

AN ILLUSTRATIVE EXAMPLE 

 

The present section illustrates with a simple example the most important features of genetic 

algorithms. Two functions are considered in the example: 

 f1(x) =
1

4
(x − 3)2  (13) 

f2(x) =
1

2
Cos

8π
19

(x −1)
 
 

 
  (14) 

where x represents an unidimensional model space, which is coded as an unsigned binary string 

of 10 bits mapped into the interval  -10.0 ≤ x ≤ 10.0. 

 

The inversion data set is defined as: 
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m T = m1 m2[ ]= f1(1) f2(1)[ ]= 1 1/ 2[ ] (15) 

 

And the fitness function is defined as by: 

F(x ) = exp −2 f1(x) − f1(1)( )2
+ f2(x) − f2(1)( )2[ ]{ } (16) 

whose global maximum is located al x = 1, and presents a local maximum at x = 5.1. 

 

Figure 3 illustrates the evolution of a fixed size population of 40 individuals. In this particular 

simulation no overlap was used, the crossover probability was 0.85 and the mutation probability 

was 0.001 with and incremental factor of 50. Linear fitness scaling with sigma truncation was 

used, and the individual number of copies per generation was restricted to 4. 

 

Six plots corresponding to the original population and generations 15, 30, 45, 60 and 75 are 

presented. The plots illustrates the fitness function and the fitness values of each of the 

individuals in the population. 
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Figure 3: Evolution of a genetic algorithm. 
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Figure 3: Evolution of a genetic algorithm. (Continuation) 
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Figure 3: Evolution of a genetic algorithm. (Continuation) 

 

 

From Figure 3, it can be observed how after starting from a uniformly distributed population the 

individuals tend to gather around the picks of the fitness function. This represents a very 

important property of the genetic algorithms. Due to their parallel nature of search, they have the 

ability of simultaneously locate different maxima over the fitness function surface. Notice how 

during the 30th generation the population is basically divided in two sub-populations, one around 

the global maximum and the other around the local maximum. From this point, some kind of 

confrontation between those sub-populations seems to begin. Indeed, notice how the diversity is 

notoriously increased at population 45. Finally, as it was expected, the algorithm converges to the 

correct solution.  

 

This example also illustrates the computational intensity of this technique. For a population of 40 

individuals evolving during 75 generations, a total of 3000 function evaluations where required. 

In practice, the total number of function evaluations can be reduced a little bit by generating a 

table of repeated individuals. 

 

 

CONCLUSIONS 

 

Genetic algorithms constitute an important family of global searching technique. Among its most 

important properties are their robustness and parallel processing capacity. However, as global 

search methods in general, their intensive computational requirements and very slow 

convergence characteristics are factors that reduce its potentiality in many cases. 

 

In the particular case of the time harmonic field electric logging problem, in which function 

evaluations are computationally expensive, the feasibility of this technique depends basically on 
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the availability time. As in the case of simulated annealing, genetic algorithms are better suited 

for hybrid optimization schemes than for an stand alone global optimization. 
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