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INTRODUCTION 

 

This report discuss simulated annealing, one class of global search algorithms to be used in the 

inverse modeling of the time harmonic field electric logging problem. First, a brief description of 

its fundaments is presented. Then, a more precise description of the technique and the parameters 

involved in its implementation is discussed. Finally, an example is provided to illustrate the most 

important properties of simulated annealing. 

 

 

FUNDAMENTS OF THE METHOD 

 

The technique of simulated annealing has it fundaments on the parallelism existent between the 

problem of finding the minimum of a function of multiple variables and the statistical mechanics 

phenomenon of annealing. The term ‘annealing’ refers to the process in which a solid, that has 

been brought into liquid phase by increasing its temperature, is brought back to a solid phase by 

slowly reducing the temperature in such a way that all the particles are allowed to arrange 

themselves in a perfect crystallized state. Such a crystallized state represents the global minimum 

of certain energy function [1]. 

 

In order for annealing to occur properly, the two following conditions have to be met. First, the 

initial temperature has to be high enough to guarantee that the process will start from a state in 

which all the particles are randomly arranged into the liquid phase. Second, the subsequent 

cooling process has to be slow enough in order to guarantee that the particles will have time to 

rearrange themselves and reach thermal equilibrium at each temperature. Otherwise, if the initial 

temperature is not high enough or the cooling process is too fast, the annealing process will result 
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in a metastable glass instead of a perfect crystal. This represents a suboptimal situation in which 

a local minimum of the energy function has been reached. 

 

The simulated annealing search technique bases it operation in considering the objective function 

of the minimization problem as the equivalent energy function of an illusory annealing process. 

In this way a control parameter T, that is referred as the ‘temperature’, is used to control the 

randomness of the searching process. It then constitutes a guided Monte Carlo technique. 

 

The algorithm is defined in such a way that for high values of T, the search is performed totally 

at random; and then, when T is decreased, the search becomes more and more directive. This 

gives simulated annealing one of its two most valuable properties, the fact that it starts by 

evaluating gross features of the objective function (high temperatures) and evolves in such a way 

that ends by evaluating finer details in an optimal region (low temperatures). The second 

valuable property of simulated annealing is due to its random nature; the algorithm is defined in 

such a way that there exists always a possibility (either small or high, but greater than zero) of 

moving ‘upwards’ in the objective function. According to this, the algorithm does not necessarily 

exhibit the risk of getting trapped in a local minimum because there is always the possibility of 

jumping out of it. 

 

The philosophy behind simulated annealing can be summarized by saying that when looking for 

the global minimum of a function the search must be performed by moving downwards most of 

the time but not necessarily always [2]. 

 

As it can be seen now, simulated annealing constitutes a very robust searching technique that 

presents important advantages over other searching techniques. However, there is a cost 

involved. The principal drawback of simulated annealing is its intensive computational 

requirements. Although it is true that it only requires evaluations of the objective function (and 

does not require any derivatives); much more of such evaluations than in other search techniques 

are required. Also, as it is discussed in the next section, success in locating the global minimum 



 3 

is only guaranteed for an extremely slow cooling process. In practice, such a cooling process can 

increase computational requirements enormously. 

 

 

STRUCTURE OF SIMULATED ANNEALING ALGORITHMS 

 

The general simulated annealing algorithm can be described as an iterative procedure composed 

by two nested loops. The inner loop simulates the achievement of thermal equilibrium at a given 

temperature, so it is going to be referred as the thermal equilibrium loop. The outer loop 

performs the cooling process, in which the temperature is decreased from its initial value towards 

zero until certain convergence criterion is achieved and the search is stopped; this loop is going 

to referred as the cooling loop or annealing loop. 

 

 

1.- Thermal equilibrium loop. 

The operation of the inner loop can be described as follows. Starting with an initial model, each 

iteration of the inner loop computes a new model that may or may not be accepted according to 

certain probability. Three elements can be identified here: 

 

1.a.- Perturbation scheme. 

It defines the way in which the model is updated. First, a ‘perturbation’ is computed and then it is 

added to the existent model x i  in order to obtain the new one x u. Although the perturbation is 

always computed at random, it can be done by using different kinds of distributions. The simplest 

way is by using a uniform distribution over the feasible set in the model space; however, the 

main problem of this scheme is that it requires a very slow cooling process.  

 

Alternative ways, that allow the use of faster cooling processes, involve probability distributions 

that change with temperature. Examples of them are the Gaussian or normal distribution: 
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f(x) =
1

2π aT
exp −

x2

2 (aT)2
 
 
  

 
 (1) 

and the Cauchy distribution: 

f(x) =
1

π
aT

(aT)2 + x2  (2) 

where f (x) is the density function, a is an scaling factor and T is the temperature parameter. In 

practice, the Cauchy distribution is preferred over the normal distribution because of its flatter 

tails, which makes it easier to escape from local minima. 

 

1.b.- Acceptance criterion. 

It determines if the new computed model is either accepted or discarded. The most popular and 

common acceptance criterion is the one due to Metropolis. In the Metropolis algorithm, an 

‘energy variation’ ∆E is computed by subtracting the value of the error function at the initial 

model to the value of the error at the updated model: 

∆E = E x u( )− E x i( ) (3) 

where Ex ( ) is the error function (objective function) evaluated at model x . Then, if ∆E < 0 the 

updated model x u is always accepted; but if ∆E ≥ 0 the updated model is accepted with 

probability: 

P(∆E) = exp −
∆E

T
 
 

 
  (4) 

where T is the temperature. On the other hand, if the updated model is not accepted, the new 

iteration will proceed with the same initial model x i .  

 

Notice that, at high values of temperature, the probability presented in (4) presents a uniform 

preference for any model; while, at very low temperatures, only those models for which ∆E is 

very small will have a substantial chance of occurrence. In fact, except for a scaling factor, (4) 

represents the Boltzmann distribution, which characterizes thermal equilibrium processes in the 

real statistical mechanics problems. 
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1.c.- Thermal equilibrium achievement. 

As it was discussed above, at each iteration of the thermal equilibrium loop a new ‘perturbed’ 

model is computed according to the perturbation scheme. Such model is then accepted or rejected 

according to the provided acceptance criterion and a new iteration begins. This process is 

repeated again and again until it is considered that ‘thermal equilibrium’ has been reached. At 

this point the loop is ended. Some practical strategies involve the use of a maximum number of 

perturbations, a maximum number of acceptances or a combination of them. 

 

2.- Cooling loop. 

The cooling or annealing loop, constitutes the outer loop of the algorithm. It starts with and 

initial model selected at random and an initial value of temperature To. At each iteration, the 

temperature is decreased in a progressive manner towards zero until certain convergence criterion 

is achieved. Again, three elements can be identified here: 

 

2.a.- Initial temperature. 

The initial value of the temperature parameter is of critical importance to the success of the 

algorithm. A low initial temperature can result in a lost of the global character of the search by 

restricting the search to the region of the model space around the starting point. On the other 

hand, a too high initial temperature will keep the algorithm performing ‘random walks’ over the 

model space during a large number of iterations. This will result in an unnecessary waste of 

valuable computational time; and, what is worse, it can result in an unsuccessful search if the 

total number of iterations is limited.  

 

According to this, the initial temperature value must be defined in such a way that almost any 

perturbation must be accepted during the first iteration of the cooling loop. In practice, there is 

not an easy way to determine that. Some times, available a priori information about the problem 

can help to determine appropriate values for the initial temperature. However, most of the time 

auxiliary methods have to be used. One common way to compute an good initial temperature is 

to compute the values of the objective function for a set of models selected at random; then the 
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energy variations among all of them are computed and a value of To is estimated such that, 

according to the acceptance criterion, the maximum energy variation is accepted with some 

probability close to the unit. 

 

Another way to overcome the problem of selecting a good initial temperature is with the help of a 

distortion function. As it will be discussed later in more detail, distortion functions are monotone 

concave functions that distort the error surface. They can be used to bound the objective function 

between two values, let us say for example 0 and 1. Under such a situation, the maximum 

possible energy variation is 1 and an initial temperature of 5 will accept it with a probability of 

0.82. 

 

2.b.- Cooling schedule. 

It defines the way in which the temperature is going to be decreased. It is also of crucial 

importance in the success of the search. A very low cooling schedule will take to many iterations 

to reach the global minimum and, if the total number of iterations is limited, an unsuccessful 

search can result. On the other hand, a too fast cooling schedule can get the algorithm trapped in 

a local minimum or even in any smooth region of the error surface.  

 

One common cooling process is the logarithmic schedule: 

Tk =
α To

ln (1+ k)
 (5) 

where Tk  is the value of the temperature at iteration k, To is the initial temperature and α  is the 

cooling speed parameter. This schedule, has been proved to guarantee convergence to the global 

minimum when α=1 [3]. However, it constitutes such a slow cooling schedule that it is rarely 

used in practice. Although, the use of values of α  smaller than 1 can speed up the process, 

logarithmic cooling schedules are considered in general slow. 

 

Another common cooling schedule, and more used in practice, is the geometric schedule: 

Tk = α k To (6) 
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In this type of schedule, α  must be smaller but close to 1. The most typical values of α  are 

between 0.8 and 0.99; smaller values can result in a excessively fast cooling. 

 

 

Finally, another popular cooling schedule is the exponential one: 

Tk = To exp −α k1/ N( ) (7) 

where N  is the dimensionality of the model space. This kind of schedules are very fast during the 

first iterations, but the speed of the exponential decay can be reduced by using values of α  

smaller than 1. Exponential cooling schedules are ideal to be used with temperature-dependent 

perturbation schemes. Figure 1 illustrates the relative speeds of the three given cooling schedules. 
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Figure 1: Cooling schedules. 

 

2.c.- Stopping criterion. 

The most appropriate stopping criterion to be used in the simulated annealing algorithm will 

depend on the type of search been conducted. In the case of an hybrid type of search, in which the 
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objective of the simulated annealing algorithm is just to provide the local search algorithm with a 

good starting model, a much more relaxed stopping criterion can be used. On the other hand, 

when an stand alone global search is intended a more careful criterion must be considered in 

order to obtain the desired accuracy.  

 

A common stopping criterion is to wait until a certain defined number of acceptances is not 

achieved for some number of successive temperature values. This kind of criterion represents a 

particular case of the parameter variation condition already implemented as stopping criterion for 

the local search algorithms [4]. In this way, the same criterion implemented for the local search 

algorithms can be used for the simulated annealing. However, it is important to notice that during 

its final iterations, simulated annealing moves really slow or can even stop for a while. For this 

reason, when an stand alone global search is intended, the counter parameter K (defined in [4]) 

must be chosen large enough to avoid stopping the search prematurely. 

 

 

ENERGY FUNCTION AND DISTORTION FUNCTIONS 

 

As it is already known, another important factor in the success of the search is the proper 

definition of the energy function or objective function. For the same reasons presented in [4], the 

objective function selected for the implementation of the simulated annealing algorithm is the 

mean square error between the given data and the model response. Such a function is defined by 

(1) in [4]. Alternatively, its normalized version (given by (5) in [4]) can be also used. However, 

the algorithm implementation allows the use of distortion functions to produce alterations into 

the mean square error surface. 

 

The use of monotone concave functions in order to produce a distortion of the energy function is 

a common practice in simulated annealing. This is done in order to improve the performance of 

the algorithm; and such an improvement can be obtained in various manners. The use of 

distortion functions generally accelerate the speed of convergence of the algorithm [5]. This is 
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because they can deform the energy function in such a way that differences between the local 

minima and the global minimum are accentuated. Also, as it was mentioned before, they can be 

used in order to bound the objective function and facilitate the selection of the initial 

temperature. 

 

Some commonly used distortion functions are, the logarithmic distortion: 

Ed(x ) = ln βE(x ) +1( ) (8) 

the exponential distortion: 

Ed(x ) = −exp −βE(x )( )+1 (9) 

and rational distortion: 

Ed(x ) = E(x )1 / β  (10) 

where Ed(x )  represents the new distorted error surface, E(x ) is the original objective function 

and β  is a shrinking factor that controls the ‘strength’ of the deformation. β  must be greater than 

zero. 

 

Figure 2 presents an example of how an exponential distortion function improves a given original 

objective function.  
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Figure 2: Example of an objective function and an exponential distortion of it. 

 

 

MARKOV CHAINS AND SIMULATED ANNEALING 

 

A Markov chain is a sequence of random variables that satisfies the following condition: 
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P xn x0 ,x1,…xn −1( )= P xn xn−1( ) (11) 

where P xn x0 ,x1,…xn −1( ) is the conditional probability for xn  to occur as the nth element in the 

sequence, given the sequence’s evolution x0, x1,…xn−1 ; and P xn xn−1( ) represents the 

conditional probability of xn, given the previous occurrence of xn−1  in the sequence. 

 

Condition (11) is called the Markov condition and it states that the probability of the next 

outcome or state in the sequence depends only on the present state, and it is totally independent 

of the previous evolution of the chain. 

 

The transition matrix P  of a Markov chain is defined by an stochastic square matrix whose 

entries are given by: 

pij = P xn = j xn −1 = i( ) (12) 

where pij  represents the probability of going from state i to state j. When pij  is independent of n 

for all possible states i and j, the Markov chain is said to be homogeneous. On the other hand, if 

the transition probabilities change with n, the chain is said to be non-homogeneous [6]. 

 

As it was explained before, in the simulated annealing algorithm, new models are computed 

according to a given perturbation scheme and are accepted or discarded according to an 

acceptance criterion. In this process, the occurrence of a proposed new model, as the next model 

in the sequence, depends on the current one but is totally independent of the previous ones. As it 

can be seen now, the evolution of models generated by the simulated annealing algorithm 

exhibits the Markov property (11) and constitutes, indeed, a Markov chain. However, it is a non-

homogeneous chain. This is because the acceptance probabilities depends on the temperature 

parameter, which is constantly varied during the evolution of the algorithm. 

 

An important fact is that the theory of Markov chains provides excellent means for studding the 

properties of simulated annealing algorithms. In [3], it is proved that for a initial temperature 
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large enough and α=1, the logarithmic cooling schedule presented in (5) provides a sufficient 

condition for  asymptotic convergence to the global minimum of the energy function.  

 

 

A SIMPLE BUT ILLUSTRATIVE EXAMPLE 

 

The present section illustrates with a simple example the most important properties of the 

simulated annealing searching technique. Two functions are considered in the example: 

 f1(x) =
1

4
(x − 3)2  (13) 

f2(x) =
1

2
Cos

8π
19

(x −1)
 
 

 
  (14) 

where x = ln(σ) represents an unidimensional model space, and the region of study is going to be 

limited to  -10.0 ≤ x ≤ 10.0  (4.5x10^-5 ≤ σ ≤ 2.2x10^4). 

 

The inversion data set is defined as: 

m T = m1 m2[ ]= f1(1) f2(1)[ ]= 1 1/ 2[ ] (15) 

 

And the energy function or objective function is given by: 

E(x)= f1(x) − f1(1)( )2
+ f2(x) − f2(1)( )2

 (16) 

which is the same objective function presented in Figure 2. As it can be seen from Figure 2, the 

global minimum of the energy function is located al x = 1 (σ =2.72), and it also exhibits a local 

minimum at x = 5.1 (σ =164). 

 

Figure 3 illustrates the evolution of a properly tuned simulation annealing search. For this 

simulation, a Cauchy distribution with a = 0.1 was used as perturbation scheme; the Metropolis’ 

criterion described before was used as acceptance criterion; and a geometric decay with α  = 0.9 

and initial temperature of 1000 was used as cooling schedule. No distortion function and no 

normalization of the error terms were used. The maximum number of iterations allowed was 

restricted to 300. 
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As it can be seen from Figure 3, during the first 50 iterations, the algorithm performs an almost 

pure random evaluation of the model space. Between iterations 60 and 70, a preference for two 

specific regions, corresponding to the global and local minima, starts to appear more clearly. 

Finally, the algorithm stops at iteration 140 giving a final value of x = 1.01 (σ =2.73). 
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Figure 3: Evolution of a properly tuned simulated annealing algorithm. 

 

The example presented in Figure 3 is of special importance because it also illustrates the ability 

of simulated annealing for escaping from local minima. Notice how, around the 100th iteration, 

the algorithm seems to get trapped in the local minimum at x = 5.1 (σ =164). However, it 

manages to escape and finds the correct solution. Such a situation also reveals the importance of 

an adequate stopping criterion. The use of a poor stopping criterion may result in termination of 

the search before the algorithm succeeds in escaping from a local minimum. 
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Figures 4 and 5 instead, show how a bad tuning of the simulated annealing algorithm can lead to 

an unsuccessful search. In fact, one of the most practical difficulties presented by this type of 

searching method is that the proper selection of the algorithm parameters is not always obvious. 

In most of the cases the proficiency of the parameter values is related to the specific properties of 

the energy function and other characteristics of the particular problem under consideration. 

 

In particular, Figure 4 illustrates what happens when the cooling is performed too slowly. This 

experiment is the same of Figure 3 but a value of α  = 0.99 was used instead of 0.9. Notice how 

the maximum number of iterations is reached and the algorithm is still moving randomly through 

the model space. 

Iterations

0 100 200 30050 150 250

σ 
=

 e
xp

(x
)

10000

1000

100

10

1

0.1

0.01

0.001

0.0001

 

Figure 4: Simulated annealing with α  = 0.99. 
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Figure 5: Simulated annealing with α  = 0.50. 

 

On the other hand, Figure 5 illustrates what happens when the cooling is performed too fast. 

Again, the experiment is the same of Figure 3 but a value of α  = 0.5 was used instead of 0.9. 

Notice how the algorithm does not perform a proper global search and, in this particular running, 

stops prematurely after getting stuck in the local minimum of the energy function. 

 

 

CONCLUSIONS 

 

Simulated annealing constitutes a global searching technique that presents important advantages 

over other conventional searching methods. Among its most important properties is its capacity 

for escaping from local minima. However, its intensive computational requirements and the 

practical difficulties involved in the proper choice of its parameters are factors that reduce its 

potentiality in many cases. 
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In the particular case of the time harmonic field electric logging problem, in which function 

evaluations are computationally expensive, the feasibility of simulated annealing depends 

basically on the available amount of time. For this reason, hybrid searching schemes are proven 

to be the most viable procedure [7]. In this kind of schemes, simulated annealing may be used to 

roughly approximate a good solution that will be later adjusted by a local search algorithm. 
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