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INTRODUCTION

This report discuss simulated annealing, one a@éspgobal search algorithms to be used in the
inverse modeling of the time harmonic field electdgging problem. First, a brief description of

its fundaments is presented. Then, a more preeiserigtion of the technique and the parameters
involved in its implementation is discussed. Fipadin example is provided to illustrate the most

important properties of simulated annealing.

FUNDAMENTSOF THE METHOD

The technique of simulated annealing has it funddamen the parallelism existent between the
problem of finding the minimum of a function of rtiple variables and the statistical mechanics
phenomenon of annealing. The term ‘annealing’ seferthe process in which a solid, that has
been brought into liquid phase by increasing itspgerature, is brought back to a solid phase by
slowly reducing the temperature in such a way #ihthe particles are allowed to arrange

themselves in a perfect crystallized state. Suatystallized state represents the global minimum

of certain energy function [1].

In order for annealing to occur properly, the twtidwing conditions have to be met. First, the
initial temperature has to be high enough to guemthat the process will start from a state in
which all the particles are randomly arranged itite liquid phase. Second, the subsequent
cooling process has to be slow enough in ordeutyantee that the particles will have time to
rearrange themselves and reach thermal equilibaiueach temperature. Otherwise, if the initial

temperature is not high enough or the cooling edetoo fast, the annealing process will result



in a metastable glass instead of a perfect cryBlas represents a suboptimal situation in which

a local minimum of the energy function has beeced.

The simulated annealing search technique basegiiation in considering the objective function
of the minimization problem as the equivalent epdtmction of an illusory annealing process.
In this way a control parameter T, that is referasdthe ‘temperature’, is used to control the

randomness of the searching process. It then totestia guided Monte Carlo technique.

The algorithm is defined in such a way that forhhigilues of T, the search is performed totally
at random; and then, when T is decreased, thelsé@m@omes more and more directive. This
gives simulated annealing one of its two most Malkigroperties, the fact that it starts by
evaluating gross features of the objective funcfligh temperatures) and evolves in such a way
that ends by evaluating finer details in an optimagion (low temperatures). The second
valuable property of simulated annealing is dugst@andom nature; the algorithm is defined in
such a way that there exists always a possib#ithér small or high, but greater than zero) of
moving ‘upwards’ in the objective function. Accandito this, the algorithm does not necessarily
exhibit the risk of getting trapped in a local mimim because there is always the possibility of

jumping out of it.

The philosophy behind simulated annealing can bensarized by saying that when looking for
the global minimum of a function the search muspedormed by moving downwards most of

the time but not necessarily always [2].

As it can be seen now, simulated annealing comss$ita very robust searching technique that
presents important advantages over other seardecdgniques. However, there is a cost
involved. The principal drawback of simulated adimgg is its intensive computational
requirements. Although it is true that it only regs evaluations of the objective function (and
does not require any derivatives); much more ohswaluations than in other search techniques

are required. Also, as it is discussed in the segtion, success in locating the global minimum



is only guaranteed for an extremely slow coolingcesss. In practice, such a cooling process can

increase computational requirements enormously.

STRUCTURE OF SIMULATED ANNEALING ALGORITHMS

The general simulated annealing algorithm can Iserdeed as an iterative procedure composed
by two nested loops. The inner loop simulates tteexement of thermal equilibrium at a given
temperature, so it is going to be referred as tteental equilibrium loop. The outer loop
performs the cooling process, in which the tempeeeaits decreased from its initial value towards
zero until certain convergence criterion is achikaad the search is stopped; this loop is going

to referred as the cooling loop or annealing loop.

1.- Thermal equilibrium loop.

The operation of the inner loop can be describefblésys. Starting with an initial model, each
iteration of the inner loop computes a new modat thay or may not be accepted according to

certain probability. Three elements can be idesdifiere:

1.a.- Perturbation scheme.

It defines the way in which the model is updatddstfFa ‘perturbation’ is computed and then it is
added to the existent modg| in order to obtain the new one,. Although the perturbation is
always computed at random, it can be done by wifferent kinds of distributions. The simplest
way is by using a uniform distribution over the diide set in the model space; however, the

main problem of this scheme is that it requireg®y glow cooling process.

Alternative ways, that allow the use of faster auplprocesses, involve probability distributions

that change with temperature. Examples of thenther&aussian or normal distribution:
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wheref(x) is the density function, a is an scaling factod dnis the temperature parameter. In
practice, the Cauchy distribution is preferred otrexr normal distribution because of its flatter

tails, which makes it easier to escape from lodaimma.

1.b.- Acceptance criterion.

It determines if the new computed model is eittmeated or discarded. The most popular and
common acceptance criterion is the one due to Metim In the Metropolis algorithm, an
‘energy variation’AE is computed by subtracting the value of the efuorction at the initial
model to the value of the error at the updated rnode

AE=E(x,)-E(X,) 3)
where HX) is the error function (objective function) evaktat mode. Then, ifAE < 0 the
updated modelX, is always accepted; but KE > O the updated model is accepted with

probability:
P(AE) = exp(—A—TE) (4)

where T is the temperature. On the other handiefupdated model is not accepted, the new

iteration will proceed with the same initial model

Notice that, at high values of temperature, thebability presented in (4) presents a uniform
preference for any model; while, at very low tenaperes, only those models for whialt is

very small will have a substantial chance of oauce. In fact, except for a scaling factor, (4)
represents the Boltzmann distribution, which chirames thermal equilibrium processes in the

real statistical mechanics problems.



1.c.- Thermal equilibrium achievement.

As it was discussed above, at each iteration othkemal equilibrium loop a new ‘perturbed’
model is computed according to the perturbatioesteh Such model is then accepted or rejected
according to the provided acceptance criterion andew iteration begins. This process is
repeated again and again until it is considered ‘tharmal equilibrium’ has been reached. At
this point the loop is ended. Some practical sfiateinvolve the use of a maximum number of

perturbations, a maximum number of acceptancesondination of them.

2.- Cooling loop.
The cooling or annealing loop, constitutes the oldep of the algorithm. It starts with and

initial model selected at random and an initialueabf temperature To. At each iteration, the
temperature is decreased in a progressive manwarde zero until certain convergence criterion

is achieved. Again, three elements can be idedtifere:

2.a.- Initial temperature.

The initial value of the temperature parameter ficrdical importance to the success of the
algorithm. A low initial temperature can resultanost of the global character of the search by
restricting the search to the region of the mogbalce around the starting point. On the other
hand, a too high initial temperature will keep #igorithm performing ‘random walks’ over the
model space during a large number of iterationss Will result in an unnecessary waste of
valuable computational time; and, what is worsesaih result in an unsuccessful search if the

total number of iterations is limited.

According to this, the initial temperature valueshbe defined in such a way that almost any
perturbation must be accepted during the firstaiten of the cooling loop. In practice, there is
not an easy way to determine that. Some times|adlaia priori information about the problem
can help to determine appropriate values for thit@inemperature. However, most of the time
auxiliary methods have to be used. One common waypmpute an good initial temperature is

to compute the values of the objective functiondmet of models selected at random; then the



energy variations among all of them are computedl arvalue of To is estimated such that,
according to the acceptance criterion, the maxinamargy variation is accepted with some

probability close to the unit.

Another way to overcome the problem of selectiiggad initial temperature is with the help of a
distortion function. As it will be discussed latermore detail, distortion functions are monotone
concave functions that distort the error surfadeeylfcan be used to bound the objective function
between two values, let us say for example 0 andrider such a situation, the maximum
possible energy variation is 1 and an initial terapge of 5 will accept it with a probability of
0.82.

2.b.- Cooling schedule.

It defines the way in which the temperature is goin be decreased. It is also of crucial
importance in the success of the search. A verydoaling schedule will take to many iterations

to reach the global minimum and, if the total numbkiterations is limited, an unsuccessful

search can result. On the other hand, a too fadingoschedule can get the algorithm trapped in

a local minimum or even in any smooth region ofeh®r surface.

One common cooling process is the logarithmic seleed

aTo
’ =m (5)
whereT, is the value of the temperature at iteratioT&,is the initial temperature aral is the
cooling speed parameter. This schedule, has besegto guarantee convergence to the global
minimum whena =1 [3]. However, it constitutes such a slow coolsahedule that it is rarely
used in practice. Although, the use of valuesoofmaller than 1 can speed up the process,

logarithmic cooling schedules are considered iregarslow.

Another common cooling schedule, and more usedacatige, is the geometric schedule:
T, =a“To (6)



In this type of schedulex must be smaller but close to 1. The most typiecdlies ofa are

between 0.8 and 0.99; smaller values can resaliexcessively fast cooling.

Finally, another popular cooling schedule is thpamential one:

T, =To exp-a k") @)
wheren is the dimensionality of the model space. Thislkaf schedules are very fast during the
first iterations, but the speed of the exponentatay can be reduced by using valuesaof
smaller than 1. Exponential cooling schedules dealito be used with temperature-dependent

perturbation schemes. Figure 1 illustrates thdaivel@peeds of the three given cooling schedules.
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Figure 1: Cooling schedules.

2.c.- Stopping criterion.
The most appropriate stopping criterion to be usethe simulated annealing algorithm will

depend on the type of search been conducted. icegeof an hybrid type of search, in which the
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objective of the simulated annealing algorithmusst jto provide the local search algorithm with a
good starting model, a much more relaxed stoppiitgron can be used. On the other hand,
when an stand alone global search is intended & memeful criterion must be considered in

order to obtain the desired accuracy.

A common stopping criterion is to wait until a @nt defined number of acceptances is not
achieved for some number of successive temperatloes. This kind of criterion represents a
particular case of the parameter variation condlitiveady implemented as stopping criterion for
the local search algorithms [4]. In this way, tlaeng criterion implemented for the local search
algorithms can be used for the simulated anneaHogvever, it is important to notice that during
its final iterations, simulated annealing movedlyeslow or can even stop for a while. For this
reason, when an stand alone global search is iatkeride counter parameter K (defined in [4])

must be chosen large enough to avoid stoppingaéels prematurely.

ENERGY FUNCTION AND DISTORTION FUNCTIONS

As it is already known, another important factortire success of the search is the proper
definition of the energy function or objective faion. For the same reasons presented in [4], the
objective function selected for the implementatainthe simulated annealing algorithm is the
mean square error between the given data and tdelmesponse. Such a function is defined by
(2) in [4]. Alternatively, its normalized versiogiyen by (5) in [4]) can be also used. However,
the algorithm implementation allows the use ofdaisbn functions to produce alterations into

the mean square error surface.

The use of monotone concave functions in orderadyce a distortion of the energy function is
a common practice in simulated annealing. Thisoisedin order to improve the performance of
the algorithm; and such an improvement can be wéthin various manners. The use of

distortion functions generally accelerate the spafedonvergence of the algorithm [5]. This is



because they can deform the energy function in sualay that differences between the local
minima and the global minimum are accentuated. Adsoit was mentioned before, they can be
used in order to bound the objective function amdilitate the selection of the initial

temperature.

Some commonly used distortion functions are, tigadishmic distortion:

Ey(X) =In (BE(X) +1) ©)
the exponential distortion:

E,(X) = —exp(-BE(X)) +1 9)
and rational distortion:

E,(X) = Ex)'? (10)

where E,(X) represents the new distorted error surfd&gg) is the original objective function
and 3 is a shrinking factor that controls the ‘strengththe deformationf3 must be greater than

Zero.

Figure 2 presents an example of how an exponehstdrtion function improves a given original

objective function.
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Figure 2: Example of an objective function and gpamential distortion of it.

MARKOV CHAINS AND SIMULATED ANNEALING

A Markov chain is a sequence of random variablas shtisfies the following condition:



P()ﬁwlxmxlv--xn—l =P()§1|Xn—1) (11)
where P(>g|xo,xl,...xn_l) is the conditional probability fox, to occur as the nth element in the

sequence, given the sequence’s evolutiogXx,,...X,,; and F(;dxn_l) represents the

conditional probability ok, given the previous occurrencexqf , in the sequence.

Condition (11) is called the Markov condition artdstates that the probability of the next
outcome or state in the sequence depends onlyeoprésent state, and it is totally independent

of the previous evolution of the chain.

The transition matrixP of a Markov chain is defined by an stochastic sguaatrix whose
entries are given by:

p; = P(x, = |x,, =1) (12)
where p; represents the probability of going from state state j. Wherp; is independent of n

for all possible states i and |, the Markov chairsaid to be homogeneous. On the other hand, if

the transition probabilities change with n, theicha said to be non-homogeneous [6].

As it was explained before, in the simulated aningailgorithm, new models are computed
according to a given perturbation scheme and acepéed or discarded according to an
acceptance criterion. In this process, the occoeeh a proposed new model, as the next model
in the sequence, depends on the current one bathify independent of the previous ones. As it
can be seen now, the evolution of models generayethe simulated annealing algorithm
exhibits the Markov property (11) and constitutedeed, a Markov chain. However, it is a non-
homogeneous chain. This is because the acceptaobabjities depends on the temperature

parameter, which is constantly varied during thel@ion of the algorithm.

An important fact is that the theory of Markov aaprovides excellent means for studding the

properties of simulated annealing algorithms. If [Bis proved that for a initial temperature
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large enough andi =1, the logarithmic cooling schedule presentedsipfovides a sufficient

condition for asymptotic convergence to the globalimum of the energy function.

A SIMPLE BUT ILLUSTRATIVE EXAMPLE

The present section illustrates with a simple eXantpe most important properties of the

simulated annealing searching technique. Two fonstare considered in the example:

1,00 =5 (x =3 (13

f,(x) :% Co i—g(x —1)) (14)

where x = In¢) represents an unidimensional model space, ancegien of study is going to be
limited to -10.0< x<10.0 (4.5x10"-5 0 < 2.2x10"4).

The inversion data set is defined as:
m’=[m, m,]=[f,@ fW]=[L /7 )

And the energy function or objective function isen by:

E0)= (.00~ @) + (.00 1) (16)
which is the same objective function presentediguie 2. As it can be seen from Figure 2, the
global minimum of the energy function is locatedkat 1 (0 =2.72), and it also exhibits a local
minimum at X = 5.1 =164).

Figure 3 illustrates the evolution of a properlywéd simulation annealing search. For this
simulation, a Cauchy distribution with a = 0.1 we®d as perturbation scheme; the Metropolis’
criterion described before was used as acceptaitegan; and a geometric decay with= 0.9
and initial temperature of 1000 was used as coddicliedule. No distortion function and no
normalization of the error terms were used. The imam number of iterations allowed was

restricted to 300.
12



As it can be seen from Figure 3, during the fi@titerations, the algorithm performs an almost
pure random evaluation of the model space. Betvteestions 60 and 70, a preference for two
specific regions, corresponding to the global amchl minima, starts to appear more clearly.

Finally, the algorithm stops at iteration 140 giyia final value of x = 1.010(=2.73).
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Figure 3: Evolution of a properly tuned simulatesh@aling algorithm.

The example presented in Figure 3 is of speciabimapmce because it also illustrates the ability
of simulated annealing for escaping from local miai Notice how, around the 100th iteration,
the algorithm seems to get trapped in the localimum at x = 5.1 ¢ =164). However, it
manages to escape and finds the correct solutioch & situation also reveals the importance of
an adequate stopping criterion. The use of a po@psg criterion may result in termination of

the search before the algorithm succeeds in eggé@m a local minimum.
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Figures 4 and 5 instead, show how a bad tuningetimulated annealing algorithm can lead to
an unsuccessful search. In fact, one of the masttipal difficulties presented by this type of

searching method is that the proper selection @fatorithm parameters is not always obvious.
In most of the cases the proficiency of the paramedlues is related to the specific properties of

the energy function and other characteristics efgrticular problem under consideration.

In particular, Figure 4 illustrates what happenswithe cooling is performed too slowly. This
experiment is the same of Figure 3 but a valua of 0.99 was used instead of 0.9. Notice how
the maximum number of iterations is reached anckperithm is still moving randomly through

the model space.

Figure 4: Simulated annealing with = 0.99.
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Figure 5: Simulated annealing with = 0.50.

On the other hand, Figure 5 illustrates what happehen the cooling is performed too fast.
Again, the experiment is the same of Figure 3 bualae ofa = 0.5 was used instead of 0.9.
Notice how the algorithm does not perform a pragebal search and, in this particular running,

stops prematurely after getting stuck in the lesadimum of the energy function.

CONCLUSIONS

Simulated annealing constitutes a global searctaolgnique that presents important advantages
over other conventional searching methods. Amosignibst important properties is its capacity
for escaping from local minima. However, its inteescomputational requirements and the
practical difficulties involved in the proper cheiof its parameters are factors that reduce its

potentiality in many cases.
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In the particular case of the time harmonic fieldctic logging problem, in which function
evaluations are computationally expensive, theilfddg of simulated annealing depends
basically on the available amount of time. For tieigson, hybrid searching schemes are proven
to be the most viable procedure [7]. In this kifidchemes, simulated annealing may be used to

roughly approximate a good solution that will beetaadjusted by a local search algorithm.
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