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INTRODUCTION

This report discuss one class of the local sedgdrithms to be used in the inverse modeling of
the time harmonic field electric logging problenHHEL), the Born approximation. First, a brief
analysis about the technique is presented. Theregtivalence to the least mean square error

problem will be shown. Finally, a brief discussmm convergence is presented.

THE BORN APPROXIMATION

As it was presented in [1], the Born approximai®@a local search algorithm. Although, strictly

speaking, the Born approximation is actually adimdirect inversion technique, it also may be
used as a inverse modeling technique by implemgtirecursive procedure of successive Born
approximations. In this case, it constitutes a llog@arch algorithm because it uses the

information in the local derivatives of the objeetifunction in order to search for a minimum.

As it is already known, the Taylor's series expansior a continuous function f(x) in some

neighborhood arounx, is given by:
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where the first order approximation would be dalibg the two first terms of the summation:
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The Born approximation for an unknown model x, gitke inversion data f(x) and the starting

modelx, is defined from (2) as:
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Notice that what (3) actually represents is nothimgre than a model updating equation, where
the updated modelis computed by adding a “jump” or increment valoghe initial modelx,.

In the iterative Born approximation or, for simjtyc Born approximation, the resulting updated

model at each iteration is used as starting mameéhk next iteration.

Now, let us rewrite (2) and (3) in a more suitablay for their application to the THFEL
problem. In the THFEL problem, f(x) is representgda set of given measurements and x and
X, by a set of logarithmic conductivities. Then, f(rust be replaced by a multivariable vector
function f(?): R" = R"; where N and M are the dimensionalities of thexdgace (set of given
measurements) and the model space (set of contliesjwrespectively. In this way:
m=f(x) =f(X,) +df X —%,) (4)
X=%,+W [M-1(X,)) (5)
wherem is the measurement vectalf, is the MxN matrix of derivatives ar/ is the pseudo-
inverse ofdf , which reduces tdf * when M=N. The entries aff are given by:
df(i, j) :%l fori=12,.N and F1,2,..M (6)

Ik,
and the pseudo-inverse matrix is defined by:

W = (df" df )" df” (7)
BORN APPROXIMATION AND THE LEAST MEAN SQUARE ERROR
In this section, it will be shown that the optintipa process performed by the Born

approximation is totally equivalent to solving tleast mean square error (LMSE) problem, in

which the mean square error between the inversema dnd the model response is to be



minimized. In other words, what the Born approxim@tactually does is to minimize an

objective function that is given by the mean squairer function.

First, let us consider the expression in (4). ,Iri(FIZ) can be interpreted as an estimatéufand
according to this it will be rewritten as. Also, in order to simplify the notation, (4) isigg to
be rewritten as:

m=m=f +df (X -X,) 8
where it is understood thétand df are evaluated &,. Notice then that, for a givex,, ™ is a

function of X; but in general it is actually a function &f and .

The mean square error between the given data saedtimate can be then defined as:

E2(>'<)=ﬁ§1(mi—ﬁ1i)2 ©

Let us now compute the minimum of (9). It can balgically accomplished by simultaneously
equating all its first order derivatives to zerdieTderivative of the mean square error with

respect to the kth componentXfis given by:

Or, by substituting (8) into (10):

3—5: :_W iZ::[mi - —jzz:df(i,j) (x —xoj)J %‘; for k=1,2,..M (11)
By replacing (6) into (11), rearranging some teand equating to zero we get:

O:Z::(mi —fi)z ZN;‘, :f g)f( X, =Xo)  for k=1,2,.M (12)

which defines the system of equations that mustsddeed in order to obtain th& that

minimizes the mean square error function (9).



After additional manipulations, (12) can be reveritin matrix form as:
0=A(m-)-B(X-X,) (13)
whereA is an MxN matrix with entries defined by:

a(k, i):i for k=1,2,..M and F12,..N (14.8)
0x

k
andB is an MxM matrix with entries defined by:
of, of.

6_xk 0X;

N
b(k,j) =] for k=1,2,..M and FL12,..M (14.b)
i=1

By comparing (6) with (14.a) and (14.b) the follogirelations can be deduced:
A=df" andB=AA" =df"df (15)

Finally, by substituting (15) into (13) and solvifay X:
0=df" (M-7)-df"df (x-%,) = X=%,+(df"df) df" (@-F) (16)

which is exactly the Born approximation as it wadirted in (5).

In summary, the Born approximation method can berpmeted as a gradient method [2] that
uses an exact line search algorithm and an obgedtimction given by the mean square error
between the inversion data and the synthetic deltich is computed by using a first order
expansion of the forward modeling function arouhd turrent model. Notice that the way in
which the synthetic data is computed determinesadrtbe most important peculiarities of the
Born approximation, that is the fact that the otwecfunction changes at every iteration. As it

can be seen from (8) and (9), the error is actaaflynction ofx and the current modé, .

A DISCUSSION ABOUT CONVERGENCE



Because of the particular way in which the Bornragimation moves through the model space,
convergence assumptions are not as obvious a® inae of other local search techniques. In
this section, a very simple case is going to bdistl It is expected from this analysis to develop
a more intuitive idea of how the Born approximatworks and to provide a better understanding

of its convergence properties.

Let us consider a very simple problem in which tiveersion data set is conformed of two
values,m, and m,; and the inversion model consists of just one omkn According to the
Born approximation methodology, given an initialaebx,, the new estimate will be given by:
X=X, + A(X,) (17)
whereA(x) is going to be referred as the increment funci@on it is given by:

~1,)df, + (m, -1, )df,
df 2 + df,?

A = (18)

where f, and f, are the components of a functionf, such that

f(xg) =[fu(x)) f,(x)] =[m, m,]" if x, is the correct solution model.

Notice that, for practical reasons, a simplifiedation has been introduced in (18) and will be
used all through this analysis. The complete nmagquivalents are given by:

df ,_(df\? d?f,
f.=f(x); df =—; df"=— d df =—= 19
i |(X) i dX i kdx) an i dXZ ( )

From (17) it can be observed that the possibletpa@hconvergence are given by those models
that make the increment function equal to zero.nTly equating (18) to zero, a convergence
condition over the model space is defined:

(m, - f)df, + (m, —f,)df,=0 (20)

Let us now consider a possible point of convergence(Notice that, although it constitutes a
solution of the inverse problem, it does not nemelyshave to be equal to the correct solution

X..) Suppose that the initial model for the iteratiorder consideratior, is very close to that

5



possible point of convergenoce,; so close that the behavior of the increment foncin that

neighborhood can be appropriately approximated kiea Depending on the slope of such a

line, four different situations can arise.

A.- Non-oscillatory Divergence.

This situation, which is illustrated in Figure lagcurs when the first derivative of the increment

function atx_. happens to be greater than zero. As it can befseenFigure (1.a), it does not
matter if the value of the initial model, is less or greater thax., the sign of the resulting

increment function it such that, will be always pushed away fror).

B.- Non-oscillatory Convergence.

This situation, which is presented in Figure 1rses when the first derivative of the increment

function atx. is in the interval (-1, 0). Notice that, in thiase, the increment function pushes
towardsx_. As the magnitude of the increment is smaller thatdistance betweex, andx_,

convergence towards. will be achieved after successive iterations.

C.- Oscillatory Convergence.

This situation occurs when the first derivative tbé increment function at_ is inside the

interval (-2, -1). As it can be seen from Figure, In this case convergence is also achieved; but
it is done in an oscillatory fashion. This is besmadhe size of the increment is greater than the

distance betweer, andx.. In this way, in each successive iteration, theatgd value of x will

be in the opposite side &f .

D.- Oscillatory Divergence.

In this last situation, which arises when the fidstrivative of the increment function af
happens to be less than -2, divergence occurs asahatory fashion. This is, as it can be seen

from Figure 1.d, because the size of the incremhbe always greater tha.’d X, — x0|.
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Figure 1: Possible situations in the vicinity g@int of convergencg..

Notice also that very particular kinds of behavocur when the first derivative of the increment

function atx, takes the specific values of O, -1 or -2. In tinst fcase, the size of the increment
will be zero and so the algorithm will get stuckxigt in the second case, the algorithm will reach
X. In just one iteration; and in the last case, tiger&éhm will keep oscillating forever between

X, and €x. —X,). However, these situations are very unlikely touw in the practice because of

the following two reasons. First, in general, teddvior of the increment function arourgd is



not actually linear; and second, after few itemadiothe roundoff errors due to numerical

computation will eventually deviate the algorithrarh such kind of punctual conditions.

Based on the observation described before, it $sipte to define a stability condition. Given a
convergence poink_, its is going to be defined as a stable convemggyant if only if the
situations B or C discussed above occurs in ittwyc That is, if the first derivative of the

increment function ax_ is in the interval (-2, 0).

. dA)
dx

-2

<0 (21)

where, by differentiating (18):
dA(x) _ 14 (m, —f,) P, + (m, —f,),
dx df? + df,”
o [(m, - 1,)df, + (m,, —f,)df, ][df, d?, +df, d?, ]
[af 2 +dt, 7]

(22)

Notice that when (22) is evaluated at a possiblevemence point, according to (20) the last
term reduces to zero. In this way:

-£,)d?, +(m, - f,)d?f
dAx) _ (m, -f,) 12 (m22 PG L hen ‘= x. (23)
dx df,” +df,

Now let, us consider the equivalent LMSE problenthe one under analysis. By considering

X, = X, the corresponding error function and its firstt @@cond order derivatives are given by:

£ =2 (m =1, +3 (m, £, (24
dE

—X = _(ml - fl)dfl _(mz - fz)dfz (25)
dzE 2 2 2 2

i (df? +df,?)= [(m, - £,)d?f, + (m, - £, )d*, ] (26)

By equating the first derivative to zero the nexgression follows:



(ml - fl)dfl + (mz - fz)dfz =0 (27)
which is exactly the same convergence conditiomnddfin (20). What this means is that the
possible points of convergenae for the Born approximation algorithm are precistlg local

extremes and saddle points of the mean squarefenation.

Let us consider the particular case of the locakima by imposing a negative concavity

condition on the second order derivative. By dang

(af? +df,2)-[(m, - f,)d’f, + (m, - ,)d’f,]< 0

(m, —f)d*, +(m, —f,)d*,
df? +df?

= 0< 1 (28)

where the right hand side of the inequality is dleeivative of the increment functions as it was
defined in (23). So, (27) represents the conditioder which situation A occurs (see Figure 1.a).

This means that local maxima are unstable conveegpaints.

On the other hand, by doing a similar analysisalloginima satisfy the following condition:

(m, —1,)d?, +(m, -f,)d%, 4= dA(X)|
df.? +df,” dx |,

0> (29)

which includes situations B, C and D (see FigureNDtice that according to this, every stable
convergence point will always correspond to a miumim(or a saddle point) of the mean square

error function alongx, = x, but not necessarily every minimum will correspdndan stable

convergence point.

A stability condition for minima can be derivedring21) and (29). It is given by:
df” + df,” + (m, —f,)d*, + (m, - f,)d’f, >0 (30)

Notice that for the correct solution, (30) will always hold since( m- f1)= (m2 —f2)= 0. This

means that the correct solution will always beablst convergence point.



The particular case of saddle points occur wherirtbguality in (29) is replaced by an equality.
This correspond to a very specific situation in ethconvergence may or may not be achieved
depending on the peculiarities of the problem. Hmveit can be intuitively seen that in the

concave neighborhood of a saddle point there eaikigh chance for stability.

VARIATIONS OF THE BORN APPROXIMATION

The pure Born approximation as it has been defaieale can present some practical problems
when implemented. For example, when the derivatofebe function are relatively much more
smaller than the differences between it and thergign data, huge “jumps” in the model space
can result from the model updating. This can makesergence very difficult in the case of non-
linear functions; or, what is worse, can send tlogleh out of the domain of the problem. For this
and some other reasons, additional parametersiiareintroduced into the Born approximation

algorithm in order to improve its performance.

1.- Relaxation factor.

The introduction of a relaxation factor that muigs the increment size, also known as
successful over relaxation (SOR), helps to avaigdgumps into the model space. It is actually
an over relaxation procedure because it multighesincrement by some value smaller than 1.0.
The relaxation factor can be computed accordingdjfterent criteria. It can be fixed or it can be

varied from an initial value in such a way that@pproaches 1.0 as the number of iterations
increase. It can be also relative to the size efititrement, so that small increments will be

barely altered and large increments will be sultistéyreduced.

2.- Barrier factor.
Following the same idea of the barrier functionsdug gradient methods, a barrier factor can be
defined in order to prevent the updated model fgetting out of the domain of the problem.

Although ‘limiting factor’ would be a more approate designation, the name of barrier factor
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will be used because of its analogy to gradientwoas’ barriers. The barrier factor multiplies the
increment and its value is chosen in order to centhe jump inside the allowed region in the
model space. In the program implementation, theidvafactor is defined by the following
function:

of, =[1+exp(k {x +A]-x,,))]  for i=12,..M (31)
where x; is the ith component of the modd, is the ith component of the increment,,,
defines the domain of the problemx ., <X <X.. for i=1,2,..M) and k is a variable
parameter that determines the sharpness of théidoraround the limit value,, . Notice that

for k->0, (31) defines a binary factor that is O when tineap leads out of the domain of the
problem and is 1 when it remains inside. Notic® dlst, according to (31), a different barrier

factor is defined for each of the components ofrtizglel.

3.- Nomalization of equations.

With this feature, each of the individual equatioms (4) is divided by its associated
measurement. This is done in order to balance ah&ibutions of all the different elements in
the inversion data set. It is totally equivalentthe normalization of the error terms used in
gradient methods [2]. By using normalization, tqeations in (4) are rewritten as:

f 13 . . :
12F|+_de(" K) (X, —Xo)  fori=12,..N (32)

i i k=1

CONCLUSIONS
The Born approximation provides a suitable methoglplfor the inverse modeling of the time

harmonic field electric logging problem. This ischase it constitute a relatively simple

procedure that only relies on first order derivasivwhich can be analytically approximated [3].
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Although in fact the Born approximation solves mehrized version of the problem at each
iteration, as it has been discussed in this regogtpossible convergence points of the algorithm

are generally determined by the minima of a meausgerror function.
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