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INTRODUCTION 

 

This report discuss one class of the local search algorithms to be used in the inverse modeling of 

the time harmonic field electric logging problem (THFEL), the Born approximation. First, a brief 

analysis about the technique is presented. Then, its equivalence to the least mean square error 

problem will be shown. Finally, a brief discussion on convergence is presented. 

 

 

THE BORN APPROXIMATION 

 

As it was presented in [1], the Born approximation is a local search algorithm. Although, strictly 

speaking, the Born approximation is actually a linear direct inversion technique, it also may be 

used as a inverse modeling technique by implementing a recursive procedure of successive Born 

approximations. In this case, it constitutes a local search algorithm because it uses the 

information in the local derivatives of the objective function in order to search for a minimum. 

 

As it is already known, the Taylor’s series expansion for a continuous function f(x) in some 

neighborhood around x0  is given by: 

f(x) = f(x0) +
df

dx x0

(x − x0) +
1

2

d2f

dx2

x 0

(x − x0)2 +
1

6

d3f

dx3

x0

(x − x0)3 +… (1) 

where the first order approximation would be defined by the two first terms of the summation: 

f(x) ≈ f(x0) +
df

dx x0

(x − x0)  (2) 

 

The Born approximation for an unknown model x, given the inversion data f(x) and the starting 

model x0  is defined from (2) as: 
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ˆ x = x0 +
f (x) − f (x0)

(df / dx) x0

 (3) 

 

Notice that what (3) actually represents is nothing more than a model updating equation, where 

the updated model ˆ x is computed by adding a “jump” or increment value to the initial model x0 . 

In the iterative Born approximation or, for simplicity, Born approximation, the resulting updated 

model at each iteration is used as starting model for the next iteration. 

 

Now, let us rewrite (2) and (3) in a more suitable way for their application to the THFEL 

problem. In the THFEL problem, f(x) is represented by a set of given measurements and x and 

x0 by a set of logarithmic conductivities. Then, f(x) must be replaced by a multivariable vector 

function f (x ) : RM ⇒ RN ; where N and M are the dimensionalities of the data space (set of given 

measurements) and the model space (set of conductivities) respectively. In this way: 

m ≈ f (x ) = f (x 0) + df (x − x 0)  (4) 

ˆ x = x 0 + W m − f (x 0)( ) (5) 

where m  is the measurement vector, df  is the MxN matrix of derivatives and W  is the pseudo-

inverse of df , which reduces to df −1  when M=N. The entries of df  are given by: 

df(i, j) =
dfi

dxj x 0

for i = 1,2,...N and j=1,2,...M (6) 

and the pseudo-inverse matrix is defined by: 

W = dfT df( )−1
dfT  (7) 

 

 

BORN APPROXIMATION AND THE LEAST MEAN SQUARE ERROR 

 

In this section, it will be shown that the optimization process performed by the Born 

approximation is totally equivalent to solving the least mean square error (LMSE) problem, in 

which the mean square error between the inversion data and the model response is to be 
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minimized. In other words, what the Born approximation actually does is to minimize an 

objective function that is given by the mean square error function. 

 

First, let us consider the expression in (4). In it, f (x )  can be interpreted as an estimate of m , and 

according to this it will be rewritten as ˆ m . Also, in order to simplify the notation, (4) is going to 

be rewritten as: 

m ≈ ˆ m = f + df (x − x 0)  (8) 

where it is understood that f and df  are evaluated at x 0 . Notice then that, for a given x 0 , ˆ m  is a 

function of x ; but in general it is actually a function of x 0 and x . 

 

The mean square error between the given data and its estimate can be then defined as: 

E2 x ( ) =
1

N
m i − ˆ m i( )2

i =1

N

∑  (9) 

 

Let us now compute the minimum of (9). It can be analytically accomplished by simultaneously 

equating all its first order derivatives to zero. The derivative of the mean square error with 

respect to the kth component of x  is given by: 

∂E2

∂xk

=
−2

N
m i − ˆ m i( )∂ ˆ m i

∂xki=1

N

∑  (10) 

 

Or, by substituting (8) into (10): 

 
∂E2

∂xk

=
−2

N
m i − f i − df(i, j)

j=1

M

∑ (x j − x0j)
 

 
  

 
 ∂f i

∂xki=1

N

∑ for k =1,2,...M  (11) 

 

By replacing (6) into (11), rearranging some terms and equating to zero we get: 

0 = m i − f i( ) ∂f i

∂xki=1

N

∑ −
∂f i

∂xk

∂f i

∂x jj=1

M

∑ (x j − x0 j)
i =1

N

∑ for k = 1,2,...M (12) 

which defines the system of equations that must be solved in order to obtain the x  that 

minimizes the mean square error function (9). 
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After additional manipulations, (12) can be rewritten in matrix form as: 

0 = A m − f ( )− B (x − x 0) (13) 

where A  is an MxN matrix with entries defined by: 

a(k, i) =
∂f i

∂xk

for k = 1,2,...M and i= 1,2,...N (14.a) 

and B is an MxM matrix with entries defined by:  

b(k, j) =
∂f i

∂xki =1

N

∑
∂f i

∂x j

for k = 1,2,...M and j=1,2,...M (14.b) 

 

 

By comparing (6) with (14.a) and (14.b) the following relations can be deduced: 

A = dfT   and  B = A AT = df T df  (15) 

 

Finally, by substituting (15) into (13) and solving for x : 

0 = df T m − f ( )− df T df (x − x 0)    ⇒ x = x 0 + dfT df( )−1
dfT m − f ( ) (16) 

which is exactly the Born approximation as it was defined in (5). 

 

In summary, the Born approximation method can be interpreted as a gradient method [2] that 

uses an exact line search algorithm and an objective function given by the mean square error 

between the inversion data and the synthetic data, which is computed by using a first order 

expansion of the forward modeling function around the current model. Notice that the way in 

which the synthetic data is computed determines one of the most important peculiarities of the 

Born approximation, that is the fact that the objective function changes at every iteration. As it 

can be seen from (8) and (9), the error is actually a function of x  and the current model x 0 . 

 

 

A DISCUSSION ABOUT CONVERGENCE 
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Because of the particular way in which the Born approximation moves through the model space, 

convergence assumptions are not as obvious as in the case of other local search techniques. In 

this section, a very simple case is going to be studied. It is expected from this analysis to develop 

a more intuitive idea of how the Born approximation works and to provide a better understanding 

of its convergence properties. 

 

Let us consider a very simple problem in which the inversion data set is conformed of two 

values, m1  and m2 ; and the inversion model consists of just one unknown. According to the 

Born approximation methodology, given an initial model x0 , the new estimate will be given by: 

ˆ x = x0 + ∆(x0)  (17) 

where ∆(x) is going to be referred as the increment function, and it is given by: 

∆(x) =
m1 − f1( )df1 + m2 − f2( )df2

df1
2 + df2

2  (18) 

where f1 and f2  are the components of a function f , such that 

f (xs) = f1(xs) f2(xs)[ ]T
= m1 m2[ ]T

  if xs is the correct solution model.  

 

Notice that, for practical reasons, a simplified notation has been introduced in (18) and will be 

used all through this analysis. The complete notation equivalents are given by: 

f i = f i (x); dfi =
dfi

dx
; dfi

2 =
dfi

dx
 
 

 
 

2

and d2 f i =
d2f i

dx2  (19) 

 

From (17) it can be observed that the possible points of convergence are given by those models 

that make the increment function equal to zero. Then, by equating (18) to zero, a convergence 

condition over the model space is defined: 

m1 − f1( )df1 + m2 − f2( )df2 = 0 (20) 

 

Let us now consider a possible point of convergence xc . (Notice that, although it constitutes a 

solution of the inverse problem, it does not necessarily have to be equal to the correct solution 

xs.) Suppose that the initial model for the iteration under consideration x0 is very close to that 
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possible point of convergence xc ; so close that the behavior of the increment function in that 

neighborhood can be appropriately approximated by a line. Depending on the slope of such a 

line, four different situations can arise. 

 

A.- Non-oscillatory Divergence. 

This situation, which is illustrated in Figure 1.a, occurs when the first derivative of the increment 

function at xc  happens to be greater than zero. As it can be seen from Figure (1.a), it does not 

matter if the value of the initial model x0 is less or greater than xc , the sign of the resulting 

increment function it such that x0  will be always pushed away from xc . 

 

B.- Non-oscillatory Convergence. 

This situation, which is presented in Figure 1.b, arises when the first derivative of the increment 

function at x c  is in the interval (-1, 0). Notice that, in this case, the increment function pushes x0 

towards x c . As the magnitude of the increment is smaller that the distance between x0 and x c , 

convergence towards xc  will be achieved after successive iterations. 

 

C.- Oscillatory Convergence. 

This situation occurs when the first derivative of the increment function at x c  is inside the 

interval (-2, -1). As it can be seen from Figure 1.c, in this case convergence is also achieved; but 

it is done in an oscillatory fashion. This is because the size of the increment is greater than the 

distance between x0 and xc . In this way, in each successive iteration, the updated value of x will 

be in the opposite side of xc . 

 

D.- Oscillatory Divergence. 

In this last situation, which arises when the first derivative of the increment function at xc  

happens to be less than -2, divergence occurs in an oscillatory fashion. This is, as it can be seen 

from Figure 1.d, because the size of the increment will be always greater than 2 xc − x0 . 
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Figure 1: Possible situations in the vicinity of a point of convergence xc . 

 

Notice also that very particular kinds of behavior occur when the first derivative of the increment 

function at x c  takes the specific values of 0, -1 or -2. In the first case, the size of the increment 

will be zero and so the algorithm will get stuck in x0 ; in the second case, the algorithm will reach 

xc  in just one iteration; and in the last case, the algorithm will keep oscillating forever between 

x0 and (2xc − x0). However, these situations are very unlikely to occur in the practice because of 

the following two reasons. First, in general, the behavior of the increment function around xc  is 
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not actually linear; and second, after few iterations, the roundoff errors due to numerical 

computation will eventually deviate the algorithm from such kind of punctual conditions. 

 

Based on the observation described before, it is possible to define a stability condition. Given a 

convergence point xc , its is going to be defined as a stable convergence point if only if the 

situations B or C discussed above occurs in its vicinity. That is, if the first derivative of the 

increment function at xc  is in the interval (-2, 0). 

−2 <
d∆(x)

dx x c

< 0 (21) 

where, by differentiating (18): 

d∆(x)

dx
= −1 +

m1 − f1( )d2f1 + m2 − f2( )d2f2

df1
2 + df2

2  

− 2
m1 − f1( )df1 + m2 − f2( )df2[ ] df1d2f1 + df2 d2f2[ ]

df1
2 + df2

2[ ]2  (22) 

 

Notice that when (22) is evaluated at a possible convergence point, according to (20) the last 

term reduces to zero. In this way: 

d∆(x)

dx
=

m1 − f1( )d2f1 + m2 − f2( )d2f2

df1
2 + df2

2 −1 when x= xc  (23) 

 

Now let, us consider the equivalent LMSE problem to the one under analysis. By considering 

x0 = x , the corresponding error function and its first and second order derivatives are given by: 

 E =
1

2
m1 − f1( )2

+
1

2
m2 − f2( )2

 (24) 

dE

dx
= − m1 − f1( )df1 − m2 − f2( )df2  (25) 

d2E

dx2 = df1
2 + df2

2( )− m1 − f1( )d2f1 + m2 − f2( )d2f2[ ] (26) 

 

By equating the first derivative to zero the next expression follows: 
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m1 − f1( )df1 + m2 − f2( )df2 = 0 (27) 

which is exactly the same convergence condition defined in (20). What this means is that the 

possible points of convergence xc  for the Born approximation algorithm are precisely the local 

extremes and saddle points of the mean square error function. 

 

Let us consider the particular case of the local maxima by imposing a negative concavity 

condition on the second order derivative. By doing so: 

df1
2 + df2

2( )− m1 − f1( )d2f1 + m2 − f2( )d2f2[ ]< 0 

⇒ 0 <
m1 − f1( )d2f1 + m2 − f2( )d2f2

df1
2 + df2

2 −1 (28) 

where the right hand side of the inequality is the derivative of the increment functions as it was 

defined in (23). So, (27) represents the condition under which situation A occurs (see Figure 1.a). 

This means that local maxima are unstable convergence points. 

 

On the other hand, by doing a similar analysis, local minima satisfy the following condition: 

0 >
m1 − f1( )d2f1 + m2 − f2( )d2f2

df1
2 + df2

2 −1=
d∆(x)

dx xc

 (29) 

which includes situations B, C and D (see Figure 1). Notice that according to this, every stable 

convergence point will always correspond to a minimum (or a saddle point) of the mean square 

error function along x0 = x , but not necessarily every minimum will correspond to an stable 

convergence point.  

 

A stability condition for minima can be derived from (21) and (29). It is given by: 

df1
2 + df2

2 + m1 − f1( )d2f1 + m2 − f2( )d2f2 > 0 (30) 

 

Notice that for the correct solution x s (30) will always hold since m1 − f1( )= m2 − f2( )= 0 . This 

means that the correct solution will always be a stable convergence point. 
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The particular case of saddle points occur when the inequality in (29) is replaced by an equality. 

This correspond to a very specific situation in which convergence may or may not be achieved 

depending on the peculiarities of the problem. However, it can be intuitively seen that in the 

concave neighborhood of a saddle point there exists a high chance for stability. 

 

 

VARIATIONS OF THE BORN APPROXIMATION 

 

The pure Born approximation as it has been defined above can present some practical problems 

when implemented. For example, when the derivatives of the function are relatively much more 

smaller than the differences between it and the inversion data, huge “jumps” in the model space 

can result from the model updating. This can make convergence very difficult in the case of non-

linear functions; or, what is worse, can send the model out of the domain of the problem. For this 

and some other reasons, additional parameters have been introduced into the Born approximation 

algorithm in order to improve its performance. 

 

1.- Relaxation factor. 

The introduction of a relaxation factor that multiplies the increment size, also known as 

successful over relaxation (SOR), helps to avoid large jumps into the model space. It is actually 

an over relaxation procedure because it multiplies the increment by some value smaller than 1.0. 

The relaxation factor can be computed according to different criteria. It can be fixed or it can be 

varied from an initial value in such a way that it approaches 1.0 as the number of iterations 

increase. It can be also relative to the size of the increment, so that small increments will be 

barely altered and large increments will be substantially reduced. 

 

2.- Barrier factor. 

Following the same idea of the barrier functions used in gradient methods, a barrier factor can be 

defined in order to prevent the updated model from getting out of the domain of the problem. 

Although ‘limiting factor’ would be a more appropriate designation, the name of barrier factor 



 11 

will be used because of its analogy to gradient methods’ barriers. The barrier factor multiplies the 

increment and its value is chosen in order to confine the jump inside the allowed region in the 

model space. In the program implementation, the barrier factor is defined by the following 

function: 

bfi = 1+ exp k ( xi + ∆ i − xmax)( )[ ]−1

for i =1,2,...M (31) 

where x i  is the ith component of the model, ∆ i  is the ith component of the increment, xmax 

defines the domain of the problem (−xmax < xi < xmax for i=1,2,...M) and k is a variable 

parameter that determines the sharpness of the function around the limit value xmax. Notice that 

for k->∞, (31) defines a binary factor that is 0 when the jump leads out of the domain of the 

problem and is 1 when it remains inside. Notice also that, according to (31), a different barrier 

factor is defined for each of the components of the model. 

 

3.- Nomalization of equations. 

With this feature, each of the individual equations in (4) is divided by its associated 

measurement. This is done in order to balance the contributions of all the different elements in 

the inversion data set. It is totally equivalent to the normalization of the error terms used in 

gradient methods [2]. By using normalization, the equations in (4) are rewritten as: 

1≈
f i

mi

+
1

mi

df(i, k) (x k − x0k) for i =1,2,...N
k =1

M

∑  (32) 

 

 

CONCLUSIONS 

 

The Born approximation provides a suitable methodology for the inverse modeling of the time 

harmonic field electric logging problem. This is because it constitute a relatively simple 

procedure that only relies on first order derivatives, which can be analytically approximated [3]. 
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Although in fact the Born approximation solves a linearized version of the problem at each 

iteration, as it has been discussed in this report, the possible convergence points of the algorithm 

are generally determined by the minima of a mean square error function.  
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