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INTRODUCTION 

 

This report discuss one class of the local search algorithms to be used in the inverse modeling of 

the time harmonic field electric logging problem, the Gradient Methods. First, a brief analysis of 

Gradient Methods in general is presented. Then a more precise description of each of the specific 

algorithms that have been implemented is provided. 

 

 

GENERAL DESCRIPTION OF GRADIENT METHODS 

 

As it was described in [1], the Gradient Methods are local search algorithms. As their name 

suggests it, Gradient Methods search for local minima over the error function surface by using 

the information provided by the local value of the gradient. They are linear inversion methods 

since they only relay in the information provided by the first derivatives. Their success is always 

based on the assumption that very close to a minimum the error surface is concave; this is called 

the condition number assumption [2]. For this reason, the definition of the objective function 

plays an important role in the performance of the algorithm. 

 

The general Gradient Method algorithm can be describe as an iterative procedure in which each 

iteration is composed by the following three basic steps: 

 

1.- Computation of a direction of search. 

In this first step, a vector d  (direction of search) is computed based on the information provided 

by the gradient at the current location on the objective function. Basically, the gradient direction 

and the direction of search must form an angle greater than π/2 and smaller than 3π/2. Under this 
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condition the direction of search is guarantied to be a descent direction, so the algorithm will 

move downwards along the error surface. 

 

2.- Computation of a step size. 

Once the direction of search has been computed, a real number s (step size or jump size) is 

computed. This value is also computed using the information provided by the gradient which 

some times is complemented by a more detailed exploration of the error surface along the 

direction of search. The procedures by which the step size can be computed are called Line 

Search Algorithms. Three different  Line Search algorithms will be discussed latter. 

 

3.- Updating of the model parameters. 

Once the direction of search and the step size have been determined, the new model can be 

obtained by ‘jumping’ in the model parameter space. Basically, the new location in the space is 

determined by the previous location plus the step size times the direction of search. The new 

model is then used as the staring point for a new iteration and the procedure continues until a 

convergence condition is achieved. 

 

 

THE OBJECTIVE FUNCTION 

 

As it was mentioned before, the definition of the objective function plays a very important role in 

the performance of the optimization process. In the case of Gradient Methods, it is very clear that 

continuous first derivatives are to be desired; and, in general, smoothness is also a desired 

property of the error surface. For these reasons the most common used objective function is the 

mean square error function. Although any even order error will provide continuous first 

derivatives (if the function itself has continuous derivatives, of course), the square error will be 

the smoothest of all. Based on these facts, we will define the objective function as the mean 

square error between the given data and the model response. 

 



 3 

In this way, for a given set of measurements {M1, M2, M3 ... MN}, the objective function is 

defined as follows: 

E(x ) =
1

N
(M k − fk (x ))2

k=1

N

∑  (1) 

where x  represents the model (set of conductivities), which is given by: 

x = x1 x2 … xM[ ]T
= ln(σ1) ln(σ2) … ln(σM )[ ]T  (2) 

 

Also in (1), fk (x )  represents the equivalent measurement to M k  but computed for the model x . 

In other words; if for example, M k  is the real part of the logging tool reading at 100 Hz for the 

actual formation; then fk (x )  must be the real part of the tool reading at 100 Hz for model x . In 

this way: 

M k = fk (x * ) for k =1,2,...N (3) 

where x *  is the actual formation. Notice, however, that (3) will not necessarily hold if the 

formation’s model used for the inversion has a different radii distribution or a different number 

of zones from the actual formation. 

 

By differentiating (1), the gradient of the error surface can be computed. Its value at location x  is 

given by: 

∇E (x ) =
∂E

∂x1 x 

∂E

∂x2 x 

…
∂E

∂xM x 

 

  
 

  

T

 (4.a) 

where:  
∂E

∂x j x 

= −
2 σ j

N
(Mk − fk (x ))

∂f k

∂σ j x 

 

 
 

 

 
 

k =1

N

∑ for j = 1,2,...M (4.b) 

 

Sometimes, the error function defined in (1) can be inappropriate for the inversion process. That 

is the case when the data measurement values differ in orders of magnitude. In such a case, those 

error terms due to small data values are very unlikely to be minimized because of their little 

influence on the overall error. This situation can be improved by weighting each of the error 

terms in such a way that their contribution to the total error value would be more equitable. Then, 

an alternative definition of the objective function could be: 
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E(x ) =
1

N

M k − fk (x )

Mk

 
 
  

 
 

k=1

N

∑
2

 (5) 

and its gradient at location x  would be given by: 

∇E (x ) =
∂E

∂x1 x 

∂E

∂x2 x 

…
∂E

∂xM x 

 

  
 

  

T

 (6.a) 

where:  
∂E

∂x j x 

= −
2 σ j

N

M k − fk (x )

M k

 
 
  

 
 ∂fk

∂σ j x 

 

 
 

 

 
 

k =1

N

∑ for j =1,2,...M (6.b) 

 

 

LINE SEARCH ALGORITHMS 

 

Once the gradient of the error function at the current location is known, a descent direction of 

search can be obtained relatively easy. But how far in that direction it is going to be advanced is 

crucial for the success of the search. The Line Search algorithm is the procedure used to compute 

the value of the step size. In this section, the three implemented Line Search algorithms are going 

to be discussed. They are the fixed step size, the inexact line search by modified backtracking 

and the exact line search. 

 

1.- Fixed Step Size Line Search. 

It is the most simple, and most ineffective, of all Linear Search Algorithms. In it, the size of the 

jump is the same at every iteration. As it will become clear later, this type of Linear Search can 

only be used with Gradient Methods that do not use normalized directions of search. It also has 

the disadvantage of producing very slow convergence rates and presents the potential risk of not 

achieving any convergence at all by getting the optimization process trapped in undesired 

oscillations (this last situation is illustrated in Figure 1). For all this reasons, fixed step size line 

search is rarely used in practice. 
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Figure 1: Undesired oscillation under Fixed Step Size Line Search. 

 

2.- Inexact  Line Search by Modified Backtracking. 

Inexact line search algorithms just look, along the direction of search, for a new set of model 

parameters such that the new value of the objective function is substantially reduced with respect 

to the previous one. In other words, the size of the jump is selected in order to approximately 

minimize the objective function along the direction of search.  

 

One common inexact line search algorithm is the backtracking procedure [2]. In it, the objective 

function is evaluated, first at a point far from the current location and then closer and closer until 

the backtracking condition is met; then the backtracking is completed. The backtracking 

condition is given by: 

E (x + sd ) ≤ E (x ) + α s ∇E (x )T d with 0< α < 0.5 (7) 

where x  represents the current model parameters, d  is the direction of search, s is the size of the 

jump and α  is a pre-defined constant. 

 

The first evaluation of the backtracking condition (7) is performed with s = 1, and then 

successive evaluations are performed by updating s according to (8) until (7) holds. 

s:= β s with 0 < β <1.0 (8) 

where β  is another pre-defined constant. 
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Notice that what the backtracking procedure is actually doing is to compare the objective 

function to a linear approximation of it at some points along the direction of search; and stops 

when it has found a point at which the objective function is guarantied to be ‘substantially’ 

smaller than at the current model location. Here the significance of ‘substantially’ is totally 

determined by the value of the constant α . Notice also that if the direction of search is a descent 

direction (∇E (x )T d < 0), then the backtracking procedure is guarantied to stop because for s 

small enough: 

E (x + sd ) ≈ E (x ) + s ∇E (x )T d < E (x ) + α s ∇E (x )T d  (9) 

which is backtracking condition itself. 

 

As it can be seen from (8), one of the main advantages of backtracking is that only evaluations of 

the objective function, and not its gradient, are required during the line search procedure. This is 

really important when the computation of the derivatives is computationally expensive. However, 

pure backtracking as it was defined above presents one disadvantage. The problem occurs when 

the local search algorithm is reaching a minimum. As in each iteration backtracking starts with a 

relatively large jump (s=1), many evaluations are required to get to the step size that satisfies the 

backtracking condition. In fact the closer is ß to 1.0, the worse gets the problem. Figure 2.a 

illustrates such a situation. In our modified version of backtracking, this problem is solved by 

adding ‘memory’ to the size of the jump s. In this way, in every new iteration the backtracking 

procedure starts with the step size of the previous iteration. So, when the local search algorithm 

is approaching a solution, the speed of convergence is improved.  

 

Nevertheless, this new feature leads to another kind of problem, which is illustrated in Figure 

2.b. The new situation occurs when the local search algorithm is approximating a saddle point 

and the value of the step size has been substantially reduced. Under such an scenario and given 

the modification above introduced, two different things can happen. Either the algorithm will 

continue a very slow search after passing the saddle point; or ,what is worse, it can converge to 

the saddle point ‘thinking’ it is a minimum. To avoid both of those situations there must be a 
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mechanism that eventually allows the step size to increase its value. In our modified version of 

backtracking, this is accomplished by using a forward-tracking procedure. Under this scheme, if 

the backtracking condition is met during the first evaluation of the objective function; instead of 

stopping the line search, then the size of the jump is updated as in (8) but by using 1/ß. This is 

done until the backtracking condition ceases to hold. In this way, the local search algorithm will 

speed up after passing the saddle point. Notice, however, that the forward-tracking procedure will 

slow down a little bit the speed of convergence at minima; but it will be still faster than pure 

backtracking. 

 

Figure 2.a

Figure 2.b
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Figure 2: Undesired situations under Inexact Line Search with Backtracking. 
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3.- Exact  Line Search. 

In the exact line search algorithms the size of the jump is chosen in order to minimize the 

objective function along the direction of search. In practice, exact line search algorithms are 

generally used when the computational cost of evaluating the gradient is greater than the cost of 

minimizing the problem along the direction of search. Although this is not the case in our 

particular kind of problem, an exact line search algorithm has been implemented because, as it 

will be seen later, the conjugate gradients method requires an exact line search procedure. 

 

The implemented algorithm consists of a loop of inexact line searches as the one described 

before. Although all of the inexact line searches are performed along the same ray (direction of 

search), the gradient has to be computed at the beginning of each iteration of the loop in order to 

determine the sign of the step size. The exact line search algorithm stops when the gradient is 

perpendicular to the direction of search.  

 

 

STOPPING CRITERION 

 

The stopping criterion represents a set of conditions under which the local search algorithm is 

considered to have reached a solution. There is a wide variety of stopping criteria, and the most 

commonly used is to stop the search when the Euclidean norm of the gradient has reached certain 

small pre-defined value, which is called the tolerance. Other commonly used stopping criterion 

evaluates the objective function at each iteration and stops the search when the reduction with 

respect to the previous iteration is below the tolerance value. Finally, another common criterion, 

and the one that has been implemented, compares the obtained model parameters at each iteration 

and stops the search when the amount of variation in the model parameters is below the 

tolerance. 

 



 9 

Notice that none of the criteria described above is failure-free. If it is true that reaching a 

minimum is a sufficient condition for these criteria to stop the search, the opposite is generally 

false. For example, the gradient criterion will stop the search at any point the gradient is almost 

zero, which is not necessarily a minimum; in a similar way, the objective function criterion can 

mistakenly stop the search if the algorithm is moving along a level set of the error surface; and 

the parameter variation condition will stop at any iteration in which the resulting step size is very 

small. 

 

It is possible to improve the assertiveness of the stopping criterion by using a counter. Under this 

scheme, the algorithm will continue the search until the stopping criterion has been satisfied 

during the last K consecutive iterations, where K is a pre-defined integer. Another way of 

improve the assertiveness is, of course, by combining different stopping criteria. 

 

The reasons why the model parameter variation criterion was chosen was that it is the cheapest 

criterion from a computational point of view and it represents, in our opinion, the most logical 

criterion. This is since it will stop when no significant improvement is been made to the model. 

So, it does not matter if the reached model represents a good solution or not, the search algorithm 

is just stuck at that location. 

 

 

GRADIENT METHODS 

 

Five Gradient Methods, belonging to three different categories, have been implemented for the 

inverse modeling of the time harmonic field electric logging problem. Their specific 

characteristics are described in detail in the present section. 

 

1.- Negative Gradient Method. 
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This is the most simple of all. In this method, the direction of search is defined as minus the 

gradient and the size of the jump can be computed by using any of the three line search 

algorithms discussed before.  

 

2.- Steepest Descent Methods. 

In this type of methods, the direction of search is chosen to be the steepest descent direction with 

respect to certain norm [2]. The steepest descent direction with respect to the norm u is defined 

as: 

d = arg min ∇E (x )T v v 
u

= 1{ } (10) 

Notice that what (10) does is to find a vector v  into the norm u such that the inner product 

between the gradient and v  is minimum. In other words, the steepest descent direction with 

respect to the norm u is the smallest directional derivative according to the norm u. 

 

Depending on the used norm, different algorithms can be defined. Three steepest descent 

methods have been implemented by using the L1, L2  and L∞ norms. Figure 3 illustrates in a 2-

dimensional space the principal differences between the resulting search directions for these three 

steepest descent algorithms. 
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Figure 3: Steepest Descent Direction (SDD) in the L1, L2 and L∞ norms. 
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As it can be seen from Figure 3, the steepest descent direction in L2 (Euclidean norm) is simply 

the normalized negative gradient. The one in L1 is related to the largest component of the 

gradient; so, updating is performed to one variable at a time. And the steepest descent direction 

in L∞ is given  by the corner of the norm that is closest to the direction of the negative gradient. 

Notice that the steepest descent directions in L1 and L∞ are not always unique. 

 

2.a.- Steepest Descent in L1-norm. 

For any index i such that ∇E (x )
∞

= ∇E (x )( )
i

, the steepest descent direction in L1 is given by: 

d = d1 d2 … dM{ } 

with di = −sign ∇E (x )( )
i

and dk = 0 for k ≠ i  (11) 

 

2.b.- Steepest Descent in L2-norm. 

The steepest descent direction in L2 is given by: 

d = −
∇E (x )

∇E (x )
2

 (12) 

 

2.c.- Steepest Descent in L∞-norm. 

The steepest descent direction in L∞ is given by: 

d = d1 d2 … dM{ }  

with di = −sign ∇E (x )( )
i

for i = 1,2,...M (13) 

 

In all the steepest descent methods described, the step size s can be computed by using either the 

inexact line search algorithm or the exact line search one. Notice that a fixed step size cannot be 

used with this type of methods since they compute normalized directions of search and the 

situation illustrated in Figure 1 would always occur. 

 

3.- Quasi-Newton Methods. 
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In this type of methods, the direction of search is computed as the product between a positive 

definite matrix A and the negative gradient. This can be interpreted as a steepest descent 

direction with respect to the norm defined by the matrix A. The term Quasi-Newton comes from 

the fact that the matrix A intends to be an approximation to the inverse of the Hessian. Two of 

this methods have been implemented. They are described next. 

 

3.a.- BFGS Method (Broyden-Fletcher-Golfarb-Shanno Method) [2]. 

In this method, the matrix A is initially defined as the inverse of any approximation of the 

Hessian; or, when this is not possible, it is just defined as the identity matrix. The direction of 

search is given by the product between A and the negative gradient, and the step size is computed 

by using an inexact line search algorithm. Then, the matrix A is updated according to the 

following formula: 

A := A + 1+
∆g TA ∆g 

∆x T ∆g 

 
 
  

 
∆x ∆x T

∆x T ∆g 
−

A ∆g ∆x T + ∆x ∆g T A
∆x T ∆g 

 (14.a) 

where   ∆g = ∇E (x + s d ) − ∇E (x )     and     ∆x = x + s d − x = s d  (14.b) 

 

3.b.- Conjugate Gradients [2]. 

In this method, the direction of search is computed as a linear combination between the negative 

gradient and the previous direction of search. This is done according to the following formula: 

d = −∇E (x ) + η d prev  (15) 

where d prev is the direction of search of the previous iteration and η is the linear combination 

factor, which is zero for the first iteration and is updated according to (16) for the successive 

ones. Once the search direction has been obtained, the step size must be computed by using an 

exact line search algorithm. Then, the linear combination factor can be updated according to the 

following formula: 

η =
∆g T ∇E (x + s d )

∆g T d 
 (16.a) 

where   ∆g = ∇E (x + s d ) − ∇E (x )  (16.b) 
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It can be easily verified that the conjugate gradients method is a particular case of the BFGS 

method. By considering the BFGS method with the identity matrix instead of A in (14.a) and 

using an exact line search, after some algebraic manipulations, equations (15) and (16) follows. 

 

 

BARRIER FUNCTIONS 

 

Barrier functions are used to prevent search algorithms from getting out of the domain of the 

problem (the feasible set or some other specified region of operation). They are monotonous 

smooth functions which domain is defined over the same domain of the problem and they grow 

without bound as the model parameters approach the domain’s boundaries. Although they do 

modify the objective function, when used carefully, they are expected not to produce significative 

changes in the location of the minima while certainly improving the performance of the search 

algorithm. 

 

Two basic types of barrier functions will be described, the inverse barrier function and the 

logarithmic barrier function [2]. Suppose that the region of operation (domain) of the problem is 

defined by: 

dom THFEL{ } = x = x1 x2 … xM[ ]T
xmin < xi < xmax , i = 1, 2,...M{ } (17) 

 

Then, an inverse barrier function would be given by: 

φ (x ) = −
1

x i − xmax

−
1

x i − xmin

 
 
  

 
 

i =1

M

∑  (18) 

 

and a logarithmic barrier function by: 

φ (x ) = − ln (xmax − xi ) (x i − xmin)[ ]
i =1

M

∑  (19) 
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In order to include the barrier function into the optimization process, a new objective function 

has to be defined as follows: 

EB (x ) = E(x ) +
1

t
φ (x ) with t ≥ 1.0 (20) 

where E(x ) is either the error function defined in (1) or the normalized error function defined in 

(5) and t is a pre-defined weighting factor that regulates the effect of the barrier function. Notice 

that when t ->∞, the minimization of EB (x ) becomes equivalent to the minimization of E(x ). 

 

Finally, the new gradient is given by: 

∇E B(x ) =
∂EB

∂x1 x 

∂EB

∂x2 x 

…
∂EB

∂xM x 

 

  
 

  

T

 (21.a) 

∂EB

∂x j x 

=
∂E

∂x j x 

+
1

t

(−1)n

(x j − xmax)
n −

1

(x j − xmin)n

 

 
  

 
 for j = 1,2,...M (21.b) 

where n=2 for the inverse barrier function and n=1 for the logarithmic barrier function. 

 

 

CONCLUSIONS 

 

The Gradient Methods provide a suitable family of local search algorithms for the inverse 

modeling of the time harmonic field electric logging problem. 

 

Although these kind of methods are slower than other kind of local search algorithms, as for 

example the Newton Method, the fact that they only require first order derivatives and the 

availability of a procedure for computing those derivatives [3], made them a very appropriate 

choice as local search algorithms. 
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