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INTRODUCTION

This report discuss one class of the local sedgdrithms to be used in the inverse modeling of
the time harmonic field electric logging problerne tGradient Methods. First, a brief analysis of
Gradient Methods in general is presented. Thenra m@cise description of each of the specific

algorithms that have been implemented is provided.

GENERAL DESCRIPTION OF GRADIENT METHODS

As it was described in [1], the Gradient Methods kxcal search algorithms. As their name
suggests it, Gradient Methods search for local mnover the error function surface by using
the information provided by the local value of @p@adient. They are linear inversion methods
since they only relay in the information providedthe first derivatives. Their success is always
based on the assumption that very close to a mmitte error surface is concave; this is called
the condition number assumption [2]. For this reagbe definition of the objective function

plays an important role in the performance of tige@thm.

The general Gradient Method algorithm can be desas an iterative procedure in which each

iteration is composed by the following three bateps:

1.- Computation of a direction of search.

In this first step, a vectad (direction of search) is computed based on thermétion provided
by the gradient at the current location on the abje function. Basically, the gradient direction

and the direction of search must form an angletgréhant/2 and smaller thans®. Under this



condition the direction of search is guarantiebéoa descent direction, so the algorithm will

move downwards along the error surface.

2.- Computation of a step size.

Once the direction of search has been computedalanumber s (step size or jump size) is
computed. This value is also computed using therimnétion provided by the gradient which
some times is complemented by a more detailed espo of the error surface along the
direction of search. The procedures by which tlep size can be computed are called Line

Search Algorithms. Three different Line Searctoatgms will be discussed latter.

3.- Updating of the model parameters.

Once the direction of search and the step size baea determined, the new model can be
obtained by ‘jumping’ in the model parameter sp&asically, the new location in the space is
determined by the previous location plus the siep 8mes the direction of search. The new
model is then used as the staring point for a rieration and the procedure continues until a

convergence condition is achieved.

THE OBJECTIVE FUNCTION

As it was mentioned before, the definition of thigeative function plays a very important role in
the performance of the optimization process. Incidme of Gradient Methods, it is very clear that
continuous first derivatives are to be desired;, andgeneral, smoothness is also a desired
property of the error surface. For these reasomsrbst common used objective function is the
mean square error function. Although any even omeor will provide continuous first
derivatives (if the function itself has continuaderivatives, of course), the square error will be
the smoothest of all. Based on these facts, we deiline the objective function as the mean

square error between the given data and the mesiebnse.



In this way, for a given set of measurements; {Ml,, M3 ... My}, the objective function is

defined as follows:
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whereX represents the model (set of conductivities), Wisogiven by:
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Also in (1), f, (X) represents the equivalent measurememd fobut computed for the mod&.

In other words; if for examplayl, is the real part of the logging tool reading ad Hyr for the
actual formation; therf, (X) must be the real part of the tool reading at 1@0df modelX. In
this way:

M, =f(X) for k=1,2,...N ()
where X is the actual formation. Notice, however, that (@) not necessarily hold if the
formation’s model used for the inversion has aedédht radii distribution or a different number

of zones from the actual formation.

By differentiating (1), the gradient of the errarface can be computed. Its value at locakois

given by:
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Sometimes, the error function defined in (1) cannag@propriate for the inversion process. That
is the case when the data measurement values idifteders of magnitude. In such a case, those
error terms due to small data values are very alyliko be minimized because of their little
influence on the overall error. This situation das improved by weighting each of the error
terms in such a way that their contribution totibtal error value would be more equitable. Then,

an alternative definition of the objective functiocould be:
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and its gradient at locatiox would be given by:
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LINE SEARCH ALGORITHMS

Once the gradient of the error function at the entriocation is known, a descent direction of
search can be obtained relatively easy. But hovinféinat direction it is going to be advanced is
crucial for the success of the search. The LinecBealgorithm is the procedure used to compute
the value of the step size. In this section, theghmplemented Line Search algorithms are going
to be discussed. They are the fixed step sizeindgwact line search by modified backtracking

and the exact line search.

1.- Fixed Step Size Line Search.

It is the most simple, and most ineffective, oflafiear Search Algorithms. In it, the size of the
jump is the same at every iteration. As it will bew clear later, this type of Linear Search can
only be used with Gradient Methods that do notnmenalized directions of search. It also has
the disadvantage of producing very slow convergeates and presents the potential risk of not
achieving any convergence at all by getting theinmpation process trapped in undesired
oscillations (this last situation is illustrated kigure 1). For all this reasons, fixed step size |

search is rarely used in practice.



Figure 1: Undesired oscillation under Fixed Stepediine Search.

2.- Inexact Line Search by Modified Backtracking.

Inexact line search algorithms just look, along direction of search, for a new set of model
parameters such that the new value of the objefitivetion is substantially reduced with respect
to the previous one. In other words, the size efjtimp is selected in order to approximately

minimize the objective function along the directmirsearch.

One common inexact line search algorithm is the&toacking procedure [2]. In it, the objective
function is evaluated, first at a point far frone tturrent location and then closer and closer until
the backtracking condition is met; then the badkireg is completed. The backtracking
condition is given by:

E(X+sd) < EX)+asOE®X) d with 0<a<0.5 7)
whereX represents the current model parameteris, the direction of search, s is the size of the

jump anda is a pre-defined constant.

The first evaluation of the backtracking conditi¢én) is performed with s = 1, and then
successive evaluations are performed by updataggarding to (8) until (7) holds.
s:=Bs with 0<B <1.0 (8)

where[3 is another pre-defined constant.



Notice that what the backtracking procedure is abtudoing is to compare the objective
function to a linear approximation of it at soman® along the direction of search; and stops
when it has found a point at which the objectivaction is guarantied to be ‘substantially’
smaller than at the current model location. Here significance of ‘substantially’ is totally
determined by the value of the constantNotice also that if the direction of search idescent
direction (JE (X)" d < 0), then the backtracking procedure is guarantiesta@p because for s
small enough:

E(X+sd) = E(X) +s0EX) d < ER)+asOE(X)" d (9)

which is backtracking condition itself.

As it can be seen from (8), one of the main adgegaf backtracking is that only evaluations of
the objective function, and not its gradient, aguired during the line search procedure. This is
really important when the computation of the ddrmxes is computationally expensive. However,
pure backtracking as it was defined above presemsdisadvantage. The problem occurs when
the local search algorithm is reaching a minimurs.ideach iteration backtracking starts with a
relatively large jump (s=1), many evaluations aguired to get to the step size that satisfies the
backtracking condition. In fact the closer is R1t0, the worse gets the problem. Figure 2.a
illustrates such a situation. In our modified versof backtracking, this problem is solved by
adding ‘memory’ to the size of the jump s. In thiay, in every new iteration the backtracking
procedure starts with the step size of the previmration. So, when the local search algorithm

is approaching a solution, the speed of convergeniceproved.

Nevertheless, this new feature leads to anothet &fnproblem, which is illustrated in Figure
2.b. The new situation occurs when the local sealgbrithm is approximating a saddle point
and the value of the step size has been substamgdluced. Under such an scenario and given
the modification above introduced, two differenints can happen. Either the algorithm will
continue a very slow search after passing the sggluiht; or ,what is worse, it can converge to

the saddle point ‘thinking’ it is a minimum. To asidboth of those situations there must be a



mechanism that eventually allows the step sizen¢oease its value. In our modified version of
backtracking, this is accomplished by using a fedateacking procedure. Under this scheme, if
the backtracking condition is met during the fesaluation of the objective function; instead of
stopping the line search, then the size of the jisrypdated as in (8) but by using 1/R. This is
done until the backtracking condition ceases tal hiol this way, the local search algorithm will

speed up after passing the saddle point. Notiogeher, that the forward-tracking procedure will
slow down a little bit the speed of convergencenatima; but it will be still faster than pure

backtracking.

Figure 2.a
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Figure 2: Undesired situations under Inexact Lieargh with Backtracking.



3.- Exact Line Search.

In the exact line search algorithms the size of jthep is chosen in order to minimize the
objective function along the direction of searah.practice, exact line search algorithms are
generally used when the computational cost of exalg the gradient is greater than the cost of
minimizing the problem along the direction of sdmrélthough this is not the case in our
particular kind of problem, an exact line searajodathm has been implemented because, as it

will be seen later, the conjugate gradients metkeqdires an exact line search procedure.

The implemented algorithm consists of a loop ofxawt line searches as the one described
before. Although all of the inexact line searches @erformed along the same ray (direction of
search), the gradient has to be computed at tharbeg of each iteration of the loop in order to

determine the sign of the step size. The exactdewch algorithm stops when the gradient is

perpendicular to the direction of search.

STOPPING CRITERION

The stopping criterion represents a set of conationder which the local search algorithm is
considered to have reached a solution. There igla variety of stopping criteria, and the most
commonly used is to stop the search when the Eattichorm of the gradient has reached certain
small pre-defined value, which is called the taheea Other commonly used stopping criterion
evaluates the objective function at each iteratiod stops the search when the reduction with
respect to the previous iteration is below thertolee value. Finally, another common criterion,
and the one that has been implemented, comparebth@ed model parameters at each iteration
and stops the search when the amount of variatiothé model parameters is below the

tolerance.



Notice that none of the criteria described abovedaikire-free. If it is true that reaching a
minimum is a sufficient condition for these criteto stop the search, the opposite is generally
false. For example, the gradient criterion willgsthe search at any point the gradient is almost
zero, which is not necessarily a minimum; in a Bmay, the objective function criterion can
mistakenly stop the search if the algorithm is mgvalong a level set of the error surface; and
the parameter variation condition will stop at deyation in which the resulting step size is very

small.

It is possible to improve the assertiveness ofstbpping criterion by using a counter. Under this
scheme, the algorithm will continue the searchluh# stopping criterion has been satisfied
during the last K consecutive iterations, where sKai pre-defined integer. Another way of

improve the assertiveness is, of course, by comdidifferent stopping criteria.

The reasons why the model parameter variationrmitevas chosen was that it is the cheapest
criterion from a computational point of view andépresents, in our opinion, the most logical

criterion. This is since it will stop when no sifieant improvement is been made to the model.
So, it does not matter if the reached model reptssegood solution or not, the search algorithm

is just stuck at that location.

GRADIENT METHODS

Five Gradient Methods, belonging to three differeategories, have been implemented for the

inverse modeling of the time harmonic field electriogging problem. Their specific

characteristics are described in detail in thegaresection.

1.- Negative Gradient Method.




This is the most simple of all. In this method, thieection of search is defined as minus the
gradient and the size of the jump can be computediding any of the three line search

algorithms discussed before.

2.- Steepest Descent Methods.

In this type of methods, the direction of searcbhiesen to be the steepest descent direction with
respect to certain norm [2]. The steepest desdesdtibn with respect to the norm u is defined

as:
d =arg min{DE ®' v |Ivll, = 1} (10)
Notice that what (10) does is to find a vectorinto the norm u such that the inner product

between the gradient and is minimum. In other words, the steepest descéeettibn with

respect to the norm u is the smallest directioraldtive according to the norm u.

Depending on the used norm, different algorithma bea defined. Three steepest descent
methods have been implemented by using the L1ah# Lo norms. Figure 3 illustrates in a 2-
dimensional space the principal differences betwbemesulting search directions for these three

steepest descent algorithms.

SDD in L1-norm SDD in L2-norm SDD in L{J-norm
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Figure 3: Steepest Descent Direction (SDD) in thell2 and ko norms.
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As it can be seen from Figure 3, the steepest deslection in L2 (Euclidean norm) is simply
the normalized negative gradient. The one in LXelated to the largest component of the
gradient; so, updating is performed to one variabla time. And the steepest descent direction
in Lo is given by the corner of the norm that is closeghe direction of the negative gradient.

Notice that the steepest descent directions infdllao are not always unique.

2.a.- Steepest Descent in L1-norm.

For any index i such thdE (x)|_ :|(DE X)) | the steepest descent direction in L1 is given by:
d={d, d, .. d,}
with d, = -sign(0E(X)). and d =0 for k#i (11)

2.b.- Steepest Descent in L2-norm.

The steepest descent direction in L2 is given by:

g=-—-EQ (12)
EE R

2.c.- Steepest Descent iminorm.

The steepest descent direction i is given by:

d={d, d, .. d,}

with d, = -sign(0E®)). for i=12,..M (13)

In all the steepest descent methods describedt¢pesize s can be computed by using either the
inexact line search algorithm or the exact lineceane. Notice that a fixed step size cannot be
used with this type of methods since they compusmalized directions of search and the

situation illustrated in Figure 1 would always occu

3.- Quasi-Newton Methods.

11



In this type of methods, the direction of searcltosmputed as the product between a positive
definite matrix A and the negative gradient. This can be interpreteda steepest descent
direction with respect to the norm defined by thetnm A. The term Quasi-Newton comes from
the fact that the matriA intends to be an approximation to the inversehefllessian. Two of

this methods have been implemented. They are descnext.

3.a.- BFGS Method (Broyden-Fletcher-Golfarb-Shaktathod) [2].

In this method, the matriyA is initially defined as the inverse of any approation of the
Hessian; or, when this is not possible, it is juistined as the identity matrix. The direction of
search is given by the product betwéeand the negative gradient, and the step sizengputed
by using an inexact line search algorithm. Ther, thatrix A is updated according to the

following formula:

T < ATT <7 < T
A=A+ [1+ AG'AAG) SXAXT  ALGAX. +AX AGTA (14.9)
AX'AG ) AXTAG AXTAG
where Ag=0OE(X+sd)-CE(X) and AX=X+sd-X=sd (14.b)

3.b.- Conjugate Gradients [2].

In this method, the direction of search is computea linear combination between the negative
gradient and the previous direction of search. ©daone according to the following formula:
d=-CE®X)+nd (15)

prev

whered__. is the direction of search of the previous itematandn is the linear combination

prev
factor, which is zero for the first iteration arsl updated according to (16) for the successive
ones. Once the search direction has been obtdinedtep size must be computed by using an
exact line search algorithm. Then, the linear coration factor can be updated according to the

following formula:

_Ag'OER+sd) (16.a)
Ag' d '
where Ag=0OE(X +sd)-CE (X) (16.b)
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It can be easily verified that the conjugate grnatienethod is a particular case of the BFGS
method. By considering the BFGS method with thentide matrix instead ofA in (14.a) and

using an exact line search, after some algebrargpukations, equations (15) and (16) follows.

BARRIER FUNCTIONS

Barrier functions are used to prevent search dlyos from getting out of the domain of the
problem (the feasible set or some other specifesgion of operation). They are monotonous
smooth functions which domain is defined over thme domain of the problem and they grow
without bound as the model parameters approaclidhsain’s boundaries. Although they do
modify the objective function, when used carefulhgy are expected not to produce significative
changes in the location of the minima while cettaimproving the performance of the search

algorithm.

Two basic types of barrier functions will be debed, the inverse barrier function and the
logarithmic barrier function [2]. Suppose that tiegion of operation (domain) of the problem is
defined by:

dom{THFEL} :{)_(:[Xl Xy oo Xy ]T | Xiin <X < Xipao i :1’2’M} (17)

Then, an inverse barrier function would be given by

O()= —Z(XA 2 L ] (18)

i=1 X Xi = Xinin

max

and a logarithmic barrier function by:

(p&): _Z In [(Xmax _Xi) (Xi _Xmin)] (19)
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In order to include the barrier function into thetimization process, a new objective function

has to be defined as follows:
E;(X) = E(X) +% o(X) with t=1.0 (20)

whereE(X) is either the error function defined in (1) or th@malized error function defined in
(5) and t is a pre-defined weighting factor thajulates the effect of the barrier function. Notice

that when t -2, the minimization ofE; (X) becomes equivalent to the minimizationEgix).

Finally, the new gradient is given by:

_ [ oE L OE L o | T

DE )_( - B YB B Zla
o(X) |ox, | ox, %y |, | (el.2)

0| _E +_1( L) ozt (21.b)

an > axj 3 t (Xj _Xmax) (Xj _Xmin)

where n=2 for the inverse barrier function and ferlthe logarithmic barrier function.

CONCLUSIONS

The Gradient Methods provide a suitable family ofdl search algorithms for the inverse

modeling of the time harmonic field electric loggiproblem.
Although these kind of methods are slower than rokired of local search algorithms, as for
example the Newton Method, the fact that they amelguire first order derivatives and the

availability of a procedure for computing thoseidatives [3], made them a very appropriate

choice as local search algorithms.
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