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INTRODUCTION

The iterative solution of the inverse Time HarmoRield Electric Logging problem is based on
the repetitive use of the forward modeling alganthinformation provided by the value and
deriva-tives of the measurement given by the ctinmeodel is used to determine the parameters
of the model to be used in the following iterati®@u, local knowledge of the derivatives of the
measurement function is required at each iterathdthough numerical approximation of the
derivatives can be easily performed, the possibdit computing them analytically would not
only improve the convergence of the algorithm, ibalso would improve its efficiency in terms

of computational time.

This report describes the recursive procedure deeel for the computation of the derivatives
required for the implementation of the inverse pegob Due to the complexity of the
measurement function, only its first derivativeg actually computed and a linear inversion

approximation is considered.

DIFFERENTIATION OF THE MEASUREMENT FUNCTION

As it can be seen from [1], the solution of the &iiMarmonic Field Electric Logging problem,

which constitutes the logging tool measuremend, very complex function of a large number of
variables. Since the inverse problem is basicalcerned with the determination of the earthen
formation parameters, the derivatives with respecome of those parameters (specifically the
conductivities) are the ones we are interestedimore detailed discussion on why the zones’

radii are not been considered for the inverse niogléd presented in [2].



As it is described in [1], the computation of theasurement is performed in two clearly defined
steps. In the first step, the electromagnetic nese® for the current elements are computed. This
responses are represented by the quantities deaste’s. In the second step, the method of
moments is used to approximate the logging tool smesment. This is done by linearly
combining the current element responses. As thenskestep performs a linear combination of
the AR’s, then the derivatives of the measurement caceb@inly computed by performing the
same linear combination with the derivatives of ##e's. For this reason we will be only

considering the derivatives of th’s.

Also from [1], it can be seen that the values & AlR’'s are defined (after a small change of

notation) by the following integral expression:

AR()=- _hznz j Z,(\) —S'” AN72) gine gy Q)
where:
Zl()\) = _& KO(Bl ro) + I_l IO(Bl r0) (2)

0, Ko@)+ Ty l5(Br)
=BMN)={N+jwpo,, (3)
r, is the radius of the current element, h is thevsey length,w is the angular frequency of

operation,p is the magnetic permeability, is the electric conductivity of zone I, is the

reflection coefficient of zone 1 (which contain® timformation related to all the zones in the

formation), and , andK , are the zero order Modified Bessel functions it fand second kind.

The definition given in (2) is actually the wavepedance evaluated at the current element’s

surface,r,; and it is indeed a function of all the parametarshe earthen formation (radii and

conductivities) which are contained in the valuehef reflection coefficient, .

Again, because of the linearity of integration, tiherivatives ofAR(z) with respect to the

conductivities can be computed as follows:



0AR(Zz) _ -2 I dZ,(AN) S|n3()\3h/2) e dh for 1< n< N @)
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where N is the total number of zones in the fororatindo,, is the electric conductivity of zone

n. For simplicity in notationZ,(A) is going to be denoted & from now on.

As it can be seen from (4), only differentiationdf is required; and the integral in (4) can be

numerically approximated by using the same methagotieveloped in [3] for the computation
of theAR’s.

COMPUTATION OF THE DERIVATIVES OF Z1

As it is implied by (2), the computation &f, requires the knowledge of the reflection coeffitie
I,, which is obtained by the recursive procedureetsl in [1]. Equations (5) and (6), along

with figure 1, illustrate that procedure.

rN =0 (58.)
rn - — ZOn KO(Bn rn) + Zn+l K'O(Bn rn) for 1S n< (N _ 1) (5b)
ZOn lO(Bn rn) + Zn+l lO(Bn rn)
Zn - _ Zon K'O(Bn rn—l) + rn I'O(Bn rn—l) fOI’ 1S n S N (6)
KoBnro-a) + T 166, 1)
whereZ, = B, (7.a)

Gn

B.=yN +jwpo,, (7.b)

r, is the outer radius of zone n, is the reflection coefficient in zone n, adq is the wave

impedance evaluated at the inner radius of zomg f).(



Figure 1: Earthen formation and the computatioZ of

Notice from figure 1, that the recursive procedstarts at the outermost zone, where the
reflection coefficient is equated to zero (5.a)eith(5.a) is replaced into (6) in order to compute
Z,, (the wave impedance at the outermost boundgary. This value is then used in (5.b) to
compute the reflection coefficient in zone N-1, e¥his again replaced into (6) to obtain_;. In

this way, the iterations are continued until zones feached and the wave impedance at the

current element’s surface is obtained.

In order to compute the derivatives Bf, the recursions described above must be taken into
consideration. Then, starting frod, and using the chain rule, differentiation is perfed until
reaching the zone whose conductivity is being @wsethe derivative’s variable. By doing so, the
derivative ofZ, with respect to the conductivity of zone k will gigen by an expression of the

form:
0z, 9z, o, 0Z, adI,, 0Z,
00, or, oz, or, 0Z, 00,

(8)

which can also be computed by using a recursivegohare.

Before starting the computation of the derivatiMes,us remind the following Bessel function

identities, which will be required during the contgtions:



K =-K, (0 anc 150 =1,(x) CE)

K00 =Ko 2 and 150 = 1,00 -2 ©b)

wherel, andK, are the first order Modified Bessel functionsio$tfand second kind.

Also, the following derivatives will simplify theoenputations:

gg”k = 0 Onz#k (10.a)
g 5kk ) Jz(h_gtl (10.b)
GAKGP%B:Q - sz,k KiBir) (11.a)
alg(gtn) _ J';(;ku 1L(B, 1) (11.b)
%f:r) i _% KoBett) = ZBk Ky(Bir) (11.c)
alé((likk D _ j;‘;ku | (B, 1) - ZBk LB, 1) (11.d)

wherer, can be either, orr,_,.

Now let us develop the recursive procedure for élaluation of (8). This will be done by
considering the derivatives of the reflection cmétht ', and the wave impedancg,, as
defined in (5) and (6), with respect to the conuhitgt of zone k (for 1< k < N). As it will be

seen next, depending on the values of n and ke tiifeerent kind of derivatives can result:

1.- Null Derivatives As it can be observed from (5.b) and ), andl", are always functions of

conductivities n, n+1, ... N. Then, for values o$rkaller than n, the derivatives 8f and T,

with respect to the conductivity k are always zditus can be easily verified from figure 1.



or, 0 if n>k (12.a)
k

0 if n>k (13.9)

00,

2.- Long Derivatives Similarly, it can be seen from (5), (6) and (fHat the dependence on

conductivity n appears in all th@ 's present in the expression. Then, for k equainto

differentiation of (5) and (6) becomes very medsgr practical reasons and because of the
embroilment of the algebra, all the intermediatepst are going to be omitted. After
differentiating, applying the chain rule, gatheritggms and substituting expressions from (5),

(6), (9), (10) and (11); the following results atgained:

or,

=0 if k=N (12.b.1)

00,
or, _ _imu{(wz L9 +jzzajf KoB )+ 1By ) |
00, 2B, ! Oy I, M T LZOkIO(Bk M)+ Zy 1o(Be rk)J

¥ w(zok - Zk”j ALY ot 1} if k<N (12.b.2)

Bt/ [ Zoclo(Be 1)+ Zyea 15(B, 1) |
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201 Br) +Z, 5@ ) | 0T, (13.0)
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3.- Short DerivativesThe third kind of derivatives appears for thoases in which k is greater

than n. Again, it can be noticed from (5), (6) 4@}l that dependence on conductivity k occurs
only in the wave impedance or the reflection caeffit functions in the fractional expressions.
Then, after applying the chain rule, gathering &iand substituting expressions from (5), (6),
(9), (10) and (11); the following results are ob&al:



an _ I k@r)+ri@Br) 1oz,
00, - |Zoi Bz @] 90, TSk (12.c)

0z, _ lzg 1@ +zu@r)lar,
00, - L KyB, o)+ 1B ) J 30, if n<k (13.c)

Finally, the recursive implementation of (8) isfpemed by successive iterations on (5), (6), (12)

and (13). Such procedure is clearly illustratedhzyflow diagram presented in figure 2.

Figure 2: Recursive procedure for computéhg,/0o,.

NUMERICAL CONSIDERATIONS

Because of the exponential nature of the modifiedsBl functions, overflow and underflow
conditions can occur when evaluating them at laaggument values during the numerical
computation ofd Z,/0a,. In order to avoid this problem, it is possible t®@move the
exponential dependencies from the Bessel functams consider them separately. Then, the

functions and their derivatives must be expressgaoduct form as follows:



Ko(Bi 1) = IZO(Bi n) e (14.a)

Ko® 1) =Ko®ir) €™ (14.b)
loBiry) = INo(Bi ) et (14.c)
lo@Bir) = Té(& ) e™" (14.d)

where all the tilded functions do not have expoia¢diependencies.

Then, let us rewrite the recursive equations pitesem the previous section in terms of the
tilded functions in (14). Let us start by replacifiy}) into (5). By doing so, the following
expression is obtained:

- r_ ZOn I%‘O(Bn rn)-l_ Zn+1 B’O(Bn rn)—| e‘Bn "
"L 2o TB )+ 2, B, 1) | €

where the term in brackets is going to be deno$d:q1aso that:

r

for 1<sn<(N-1) (15)

r=r. e®" forl<n<(N-1) (16)

In this way (5) is then replaced by:
=0 (17.a)

F —_ ZOn IZO(Bn r.n) + Zn+l IZ'O(Bn rn)

) N = for 1sn< (N-1) (17.b)
ZOn lO(Bn rn) + Zn+l IO(Bn rn)

Next, by substituting (14) and (16) into (6), thenversion of (6) is obtained:

(B r,) +T, €2 T (B )

Z =—-Z7Z RO
O Ko(Byryy) +T, €200 T 1)

for 1<n<N (18)

Similarly, by using (14) and (16) into (12) and 113ew expressions for them are gotten:

1.- Null Derivatives (k < n)




1

L = 0 19.a
30, (19.a)
0Z, _ (20.a)
00,

2.- Long Derivatives(k = n)
of, _ T
=0 if k=N (19.b.1)
00,
of, _ _inm sz L +1223k] [ RyBr)+E Ty |
- k+1 T T
00, 2By O Ie (A LZOk lo (B 1) + Ziear 1o (B rk)J

+w(20k_zk+1jf Ro(Ber)+ F 0B, 7} N (19.5.2)
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3.- Short Derivativegk > n)
of, _ _ | _Ry@ur)+FTy@r) 102, (19.0)
ao-k LZOnIO(Bn rn)+zn+1|E)(Bn rn)J ao-k
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In this way, the recursive implementation of (8 ¢e performed in the same manner illustrated
in figure 2, but using equations (17), (18), (18% &20) instead of (5), (6), (12) and (13). In this
new procedure, numerical overflow and underflowirtythe evaluation of the Bessel functions

are less likely to occur.



PROGRAMMING STRATEGIES

Due to the complexity of the equations involvedthe computation ob Z,/0a0, it would be
very helpful to define some common factors and itevihe recursive equations in terms of them.
By looking carefully at (17), (18), (19) and (2@)e¢ following common functions or subroutines

can be defined:

O (@) = Zo Ko (B,1,) +Z,.,Ki(B, 1) (21.a)
0i (,0) = Zo,1o(Baky) + Zyws 1B, ) (21.b)
fi(@bx) = Ko(B,1)*+ X 1o(B,1,) (21.c)
d (@ bx) = Ko(B,1,)+ T x T5(B.rs) (21.d)
where a and b are the input variables gnid an output variable given by:

X =X (a,b)= €2 (a7%) (21.e)

In this way, (17), (18), (19) and (20) can be egpesl in terms of the functions in (21) as

follows:
[ 0 if n=N
o= T——gkk (.M Stherwise (22)
g; (n,n)
7 = Fi(n-1x) (23)

"t oo dg(n,n=1x)
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[0 if n>k or n=k=N

I_jurk{[(.l)Zkﬂ"' w +JZZ(2)kJ fki(k1k1X)

. | 2B, Ol HI g (k,k)
or
b=y d, (k.k (24)
o0, | o 2 - BN |y
k 'k ii ’
|
|_dki(nln!X) 07 .. it n<k
| % (n) 00,
0 if n>
( if n>k
:(jwu_ijzk+jwurk-l(25 .2 —20k]
2
| 2B o, 23, Zoo Buha
9z, =4 X 0; (kk=1) ar . (25)
00, - . if n=k
| d (k. k-1X) 00,
| .
~(n,n—-1 .
_Xxgin-1) or ok
d, (n,n-1x) 9o,

Finally, a pseudo code for the computatiowa,/ d o, is presented.
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subroutine dz/do, (k,N) {

double complexi™ (L:N), Z(L: N), d (1: N), dZ(1:N)
for n=Nto1l step size-1

F(n)=r,
Z(n) = Z,
if (n<k) then
~ ar
dr = .
™ =3
dz(n) = 24
00,
end if
end for

return dz(1) }

Algorithm 1: Recursive computation 6fZ,/00,.

Two important considerations must be taken intooant when using the algorithm shown
above. The first one is that the computationfrpfzn, 0 I:n/aok ando Z,/d o, must be done
as defined in (22), (23), (24) and (25) respecyivédind the second is that according to the

algorithm, the computation &, is obtained by setting the input variable k to O.

CONCLUSIONS

As it was mentioned before, the availability of amalytic procedure for the computation of the
tool measurement’s first order derivatives improtres convergence and the efficiency (in terms
of computational time) of the Time Harmonic Fielg&ric Logging inverse problem. The use of
a linear inversion technique only requires the kieolge of the first order derivatives, and

because of the smoothness of the measurementdonbitiear approximations should perform a

12



very good work most of the time. However, in cdsat @ different kind of inversion technique
(that uses higher order derivatives) would be nmeglliwe will certainly get a better numerical
approximation of the higher order derivatives i&rhg from the analytically-computed first

derivatives than if starting from the measuremantfion itself.
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