

Direct Problem Program

Rafael E. Banchs

INTRODUCTION

This report presents a brief description of the computational implementation of the direct version

of the time harmonic field electric logging problem. First, the structure of the program and its

four modules are presented. Then, a discussion of each module and its most important related

subroutines follows. Finally, a brief description of the program user’s interface is presented. For

more detailed and specific information about the program, subroutines and variables see [1].

GENERAL STRUCTURE OF THE PROGRAM

The “Direct_problem” program is composed by four principal modules that perform specific

functions. They are the main_program module, which is composed basically by the main

program and its function is to call the subroutines in the other modules; the i/o&control module

that is in charge of the input/output operations and the validation of the data and the program

results; the electromagnetics module, which is in charge of solving the electromagnetic equations

for the basic current element [2]; and the linear_algebra module, which models the specific

logging tool by using the method of moments [3].

The input data is provided by three input files to known; “Formation”, “Tool” and “Experiment”.

The file “Formation” provides all the information related to the earthen formation to be

considered in the simulation; number of zones, radii of the boundaries and electrical

conductivities of the zones. The file “Tool” provides the information related to the logging tool;

size of the segment length to be used in the tool representation [2], type of tool, number of

electrodes and their sizes, tool radius, currents, potential conditions, measurement, etc... And the

file “Experiment” contains the information related to the simulation; frequency of operation,

 2

control flags, number of experiments. For a more detailed information about the input file

parameters see [1].

The output data is given in six different types of output files depending on the experimental

results and on the type of output data requested by the user in the input file “Experiment”. The

output file “Electric Log” is always generated and it contains the logging tool readings resulting

from the simulation; however, in the case of a simulation which results are going to be used as

input data for inversion, the file “Inversion data” is generated instead. On the other hand, the

output files “∆R(n)”, “Tool_output” and “Circuit Model” are generated only upon request and

they contain the basic current element response, the tool’s current and potential distributions and

the tool’s circuit analog respectively. Finally, the file “Failure_report” is generated only when

any error or warning occurs during the program execution.

Figure 1 presents a diagram that summarizes the basic structure of the program, the interactions

among its modules and the input/output data flow.

 3

Formation

Tool

Experiment

²R(n) Tool_outputFailure report Circuit ModelElectric LogInversion Data

I/O & CONTROL

MAIN PROGRAM ELECTROMAGNETICS

LINEAR ALGEBRA

²R's computation

Loop
Tool modeling

Circuit model

Data check

Figure 1: Basic structure of the program “Direct_problem”.

MODULE 1: MAIN_PROGRAM

The main_program module is specific of the “Direct_problem” program. It is composed by the

main program, an initialization subroutine and a finishing subroutine. The main program

procedure can be described as follows. First, it calls the initialization subroutine, which calls

subroutines in the i/o&control module that are responsible for reading the input files, verifying

the validity of the input data, initializing the control flags and experiment definitions.

Once the initialization subroutine have been executed, the main program enters the experiment

loop where the simulations are performed. At the beginning of every cycle of the loop the

subroutine EXPSET of the i/o&control module is called. This subroutine is responsible of

 4

updating the input parameters for the simulation to be performed in that cycle. Then, the

execution is transferred to the electromagnetics module that returns the array dR, which contains

the basic current element’s response. Then, the execution is passed along with dR to the

linear_algebra module, which is responsible for the computation of the specified logging tool’s

response by using a linear combination of the basic current element’s response. This module

returns the tool reading and other output parameters in the array result.. Finally, the cycle ends by

passing this array to the i/o&control module that stores it for future generation of the output file.

If it was requested by the user, after the loop’s execution has been completed, a circuit analog for

the tool and formation is computed. This is done by calling the subroutine Impedance_Model in

the linear_algebra module.

Finally, the main program calls the finishing subroutine, which calls subroutines in the

i/o&control module that are responsible for writing the output files and ending the program

execution.

MODULE 2: I/O&CONTROL

The i/o&control module is also specific of the “Direct_problem” program. Its principal objective

is to provide an error free program execution and data handling. The basic functions are

performed by this module; loading of input data, execution failure control, and output data

formatting and saving.

LOADING OF INPUT DATA

The subroutines in this category are responsible for reading the three input files “Formation”,

“Tool” and “Experiment”, and for verifying the validity of the data contained in them. At this

first level verification, the parameters are checked to be in the appropriate ranges and to be free

of any kind of incompatibilities. After the first checking is performed, the experiment

 5

parameters, control flags and common memory regions containing the model parameters are

initialized. At this point a second level verification of the data is performed. In this second

verification, inappropriate settings than can lead to an algorithm failure or to an invalid model

representation are looked for.

EXECUTION FAILURE CONTROL

The subroutines in this category are responsible for handling errors and warning reports

generated by any of the subroutines in the program. This is mainly done by the subroutine

Failure_report that is called when a problem is detected. The calling subroutine provides and

error code or a warning code that is then matched with a message number, displayed in the screen

and stored in a failure log. At the end of the program execution, if any warning or error was

reported, the failure log is saved in the output file “Failure_report”.

Errors are generally reported when the execution of the program cannot be physically o logically

continued; for example, an overflow condition occurred, a matrix inversion could not be

completed, invalid input data was provided, etc... The occurrence of an error always results in the

immediate termination of the program execution. On the other hand, warnings are reported when

certain conditions that can lead to an algorithm failure or to an invalid model representation

occur; for example, an extremely high frequency such that the wave lengths are comparable to

the segment length size, invalid measurement or tool definitions that can lead to invalid result or

to a zero reading, etc...

OUTPUT DATA FORMATTING AND SAVING

The subroutines in this category are responsible for formatting the output data and saving it into

the appropriate output files. As it was explained before, six different types of output files exist.

Most of them are only generated upon request by using the control flags in the input file

“Experiment”. On the other hand, the tool readings are always saved into either the output file

“Electric Log” or “Inversion Data”. This last is only generated when input data for the inverse

problem is desired; such a file also includes information about the tool and the earth formation.

 6

MODULE 3: ELECTROMAGNETICS

The electromagnetics module is common for both the “Direct_problem” and the

“Inverse_problem” programs. It constitutes the computational implementation of the procedure

described in [2] by using the methodology presented in [4] and [5]. Basically, it is responsible for

calculating the set of coefficients ∆R(n) that represents the solution of the time harmonic electric

logging problem for the basic current element described in [2].

The principal subroutine in this module is the subroutine dRCOMP. All other subroutines are

transparent to the main program in the sense that they are only called by subroutines inside the

same module. Figure 2 presents a diagram that summarizes the procedure in dRCOMP and its

interaction with the most important subroutines in the module.

 7

Initialization Fast integration I and II

Initialization

LOOP: n = 0,1,2,3

²R(n) = Interpolated * Filter + Analytic

LOOP: n = 4,5,6....500

Initialization

If n = nlimit =>

²R(n) = Interpolated * Filter + Analytic

Fast integration III

Analitic = 0

Return If required, creates file "²R(n)"

Figure 2: Main procedure in the electromagnetics module.

As it can be seen from figure 2, after the initialization of parameters, the fast integration routines

are called to compute integrals I and II (dotted boxes in figure 2 represent calls to other

subroutines or functions). I and II are a cosine and a sine transform integrals respectively; for a

more detailed description refer to [4]. The fast integration algorithms use the function integrand

which, accord-ing to the information contained in the common memory regions of the module,

provides the appropriate values for the integration. Those values are computed by recursively

using the set of functions gkk(m,n) , gii(m,n) , fki(m,n) and dki(m,n) that are described in [6].

Next, in figure 2, the computation of the values ∆R(0), ∆R(1), ∆R(2), ∆R(3) is performed. As it

can be seen from [4], the ∆R(n) values are approximated by a discrete convolution between the

results of the integrals and two filters. The samples to be convolved are obtained by calling the

subroutines INTERP, which interpolates the fast integration subroutine outputs; and FILTER,

 8

which provides the appropriated filter samples. The function ANALIT provides the analytically

computed offset value resulting from the way II is computed (see details in [4]).

The initialization step in each cycle of the loop is responsible for setting the appropriated

sampling period to be used in the convolutions. That is necessary because the functions to be

convolved present rapid variations close to the origin; so, for those ∆R(n)’s with small values of

n, very small sampling periods are required; while for larger values of n, more larger sampling

periods can be used without compromising the results.

In the second loop of figure 2, computation of ∆R(n) for n = 4,5,6... 500 is performed. Here, the

procedure is exactly the same, except that when certain limit value of n is reached the fast

integration subroutine is called again in order to compute a new cosine transform (integral III).

The new integral values, along with a different filter, are used instead of II for obtaining the

remaining ∆R’s. This is done to improve the performance of the original algorithm; for more

details see [5].

Finally, if it was requested by the user, the computed results are saved into the output file

“∆R(n)” by calling the subroutine dR_OUTPUT in the i/o&control module.

MODULE 4: LINEAR_ALGEBRA

The linear_algebra module is also common for both the “Direct_problem” and the “Inverse_pro-

blem” programs. It constitutes the computational implementation of the procedure described in

[3]. Basically, it uses the method of moments to approximate the logging device’s response as a

linear combination of the basic current element’s response. So, the results generated in the

electromagne-tics module are used to compute the logging device’s response.

 9

The principal subroutine in this module is laCOMP. All other subroutines, except

Impedance_Mo-del that will be discussed later, are transparent to the main program. laCOMP is

responsible for calling the appropriate tool’s initialization and simulation subroutines. Five

different tool simulation subroutines exist, they are the generic tool, the 2-electrodes tool

(symmetric case and general case) and the laterolog 9 or LLS tool (symmetric case and general

case). The generic tool subroutine is capable of solving the linear algebra problem for almost any

tool configuration; but, for the same reason, it lacks of the speed and efficiency of an specific

tool’s algorithm. On the other hand, the other four subroutines are customized for handling

specific type of tools and constitute more efficient and faster algorithms.

Figure 3 summarizes the procedure of the generic tool algorithm. The basics of the other four

algorithms are mainly the same, with small variations and simplifications according to the

specific tool characteristics. For a more detailed information on each of the tool algorithms, refer

to [1], [2], [7] and [8].

Initialization Obtains the coefficients of matrix [dPcoeff]

Return If required, creates file "Tool_output"

Obtains the tool measurement

Obtains the coefficients of matrix [C] and vector b

If required, computes other output parameters

CV = [C] * b Computes the unkonwn current vector -1

Computes the potential difference distribution dP = [dPcoeff] * CV

 10

Figure 3: Linear algebra problem algorithm for the generic logging tool.

As it can be seen from figure 3, the algorithm starts by obtaining the coefficients for two matrices

[dPcoeff] and [C]. The coefficients of [dPcoeff] are computed by using the tool’s configuration

and the method of moments’ current equations. The coefficients of [C] are obtained from the

coefficients of [dPcoeff] by using the method of moments’ potential equations, as well as the

system equations. For details refer to [8].

Then, by inverting matrix [C], all the unknown currents in the tool model are computed, which

allows the subsequent computation of the potential differences between the centers of all

consecutive segments in the model. This is achieved by multiplying the matrix [dPcoeff] and the

computed current vector CV , as it is shown in figure 3. Once the potential differences are

known, the tool measurement and any other required output parameter can be easily obtained by

discrete integration. Finally, if it was requested by the user, the output file “Tool_output”

containing the tool’s potential and current distributions is created by calling the i/o&control

module.

The other important procedure in the linear_algebra module is the subroutine Impedance_Model .

This subroutine is directly called by the main program when the computation of a circuit analog

has been requested by the user. What this subroutine basically does is to call repeatedly the

generic tool algorithm while setting different configurations of the given logging device. This is

done in such a way that the mutual impedances for the circuit analog can be computed from the

obtained measurements. After all the impedances have been obtained, their values are saved into

the output file “Circuit Model”.

USER’S INTERFACE

 11

In order to simplify the process of generating the input files and to make the using of the program

easier, an interface program has been developed. The main functions of this program can be

summarized as follows:

A.- To provide a friendly environment for the setting and definition of the input parameters,

making data verification and corrections more simple.

B.- To offer a set of utilities for performing convenient tasks as creating backups files, changing

the format of the data, printing and plotting the output data, etc...

C.- To provide a common platform for the use of the “Direct_problem” and “Inverse_problem”

programs.

D.- To detect and notify the existence of any invalid input data in order to avoid launching the

programs under conditions that will result in error reports.

TECHNICAL SPECIFICATIONS

All the “Direct_problem” program subroutines where coded in FORTRAN 77 and compiled with

the ABSOFT FORTRAN 77 For Power Macintosh compiler. Also, some preexistent subroutines

that where available in the literature have been used. That is the case of the fast integration

functions and the matrix inversion subroutine.

The Macintosh Runtime Window Environment, which is included in the compiler, was

employed. It consists of a collection of subroutines that provide a Macintosh-type interface by

using the Macintosh Toolbox routines and the Apple user-interface guidelines. For this reason,

the code of the “Direct_problem” program is not directly portable to other platforms different

 12

than Macintosh (68xxx) or Power Macintosh (PowerPC 60x). Some modifications are required

in order to add portability to the current code.

In the actual setting of the program, it requires about 5 Mbytes of memory to run. This

requirement is related to the maximum size of logging tool that the program can handled; it is

basically determined by the parameters NUMAX and NVMAX , which are defined in the header

file “Dimensions.inc”. By reducing these parameters and recompiling the program the run time

memory requirements can be dramatically reduced; however the maximum size of logging device

allowed will be reduced too. For more information about these and other dimensional parameters

see [1].

The program’s interface has been developed by using Hypercard 2.3.5, which provides a very

convenient and flexible way to perform such a task. The interface can be either run from

Hypercard as a Stack or can be compiled into a stand alone application. It is important to mention

that the program’s interface is not required for the “Direct_problem” program execution; it just

provides a friendly environment for handling the program in a very simple and easy way. Indeed,

the input files can be alternatively created by using any editor and the “Direct_problem” can be

directly launched by opening it or double-clicking on its icon.

FINAL NOTES

In the present report, a brief discussion about the computational implementation of the direct

version of the time harmonic field electric logging problem have been presented. For a more

detailed an precise information please refer to [1] or to the code files directly, which are fully

commented and will provide the most updated information about the program.

REFERENCES

 13

[1] Help & Information Stack.

 [2] Bostick, F.; Smith, H. (1994), Propagation Effects in Electric Logging.

 University of Texas at Austin.

[3] Update Report #1: The Direct Problem.

[4] Update Report #5: Solution of the Potential Difference Integral by using Exponential

 Windowing.

[5] Update Report #6: Enhanced Method for the Solution of the Potential Difference Integral.

[6] Update Report #8: Recursive Computation of the Derivatives.

[7] Update Report #9: Modeling of Laterolog Systems.

[8] Update Report #10: Modeling of Generic Logging Devices.

