Direct Problem Program

Rafael E. Banchs

INTRODUCTION

This report presents a brief description of the gotational implementation of the direct version
of the time harmonic field electric logging problefirst, the structure of the program and its
four modules are presented. Then, a discussioradf enodule and its most important related
subroutines follows. Finally, a brief descriptiohtbbe program user’s interface is presented. For

more detailed and specific information about thegpam, subroutines and variables see [1].

GENERAL STRUCTURE OF THE PROGRAM

The “Direct_problem” program is composed by foumgpipal modules that perform specific
functions. They are the main_program module, whihcomposed basically by the main
program and its function is to call the subroutiirethe other modules; the i/o&control module
that is in charge of the input/output operationd #re validation of the data and the program
results; the electromagnetics module, which ishiarge of solving the electromagnetic equations
for the basic current element [2]; and the linelelara module, which models the specific

logging tool by using the method of moments [3].

The input data is provided by three input filekbown; “Formation”, “Tool” and “Experiment”.
The file “Formation” provides all the informatiorelated to the earthen formation to be
considered in the simulation; number of zones, iradi the boundaries and electrical
conductivities of the zones. The file “Tool” proeis the information related to the logging tool,
size of the segment length to be used in the teptesentation [2], type of tool, number of
electrodes and their sizes, tool radius, currgrdential conditions, measurement, etc... And the

file “Experiment” contains the information relatéd the simulation; frequency of operation,



control flags, number of experiments. For a mor&aitesl information about the input file

parameters see [1].

The output data is given in six different typesooftput files depending on the experimental
results and on the type of output data requesteithdyiser in the input file “Experiment”. The
output file “Electric Log” is always generated aibh@ontains the logging tool readings resulting
from the simulation; however, in the case of a $ation which results are going to be used as
input data for inversion, the file “Inversion date’ generated instead. On the other hand, the
output files ‘AR(n)”, “Tool_output” and “Circuit Model” are gendeal only upon request and
they contain the basic current element responsetoti’s current and potential distributions and
the tool’'s circuit analog respectively. Finallyetlile “Failure_report” is generated only when

any error or warning occurs during the program atien.

Figure 1 presents a diagram that summarizes the $@scture of the program, the interactions

among its modules and the input/output data flow.



|

B Bl B & B B

Figure 1: Basic structure of the program “Direcblgem”.

MODULE 1: MAIN_PROGRAM

The main_program module is specific of the “Dirgrbblem” program. It is composed by the
main program, an initialization subroutine and aishiing subroutine. The main program
procedure can be described as follows. First, lis dhe initialization subroutine, which calls
subroutines in the i/o&control module that are oasible for reading the input files, verifying

the validity of the input data, initializing the ol flags and experiment definitions.

Once the initialization subroutine have been exatuthe main program enters the experiment
loop where the simulations are performed. At thgirtm@ng of every cycle of the loop the

subroutineEXPSET of the i/o&control module is called. This subragtiis responsible of

3



updating the input parameters for the simulationb& performed in that cycle. Then, the
execution is transferred to the electromagneticdul®that returns the arrafR, which contains
the basic current element's response. Then, theuére is passed along witiR to the
linear_algebra module, which is responsible for¢dbenputation of the specified logging tool's
response by using a linear combination of the beasicent element’s response. This module
returns the tool reading and other output pararsétethe arrayesult.. Finally, the cycle ends by

passing this array to the i/o&control module thates it for future generation of the output file.

If it was requested by the user, after the loogication has been completed, a circuit analog for
the tool and formation is computed. This is donedling the subroutinempedance Modd in

the linear_algebra module.

Finally, the main program calls the finishing suliine, which calls subroutines in the
i/o&control module that are responsible for writitlge output files and ending the program

execution.

MODULE 2: I/0&CONTROL

The i/o&control module is also specific of the “Bat_problem” program. Its principal objective
is to provide an error free program execution ahdhandling. The basic functions are
performed by this module; loading of input datag@xion failure control, and output data

formatting and saving.

LOADING OF INPUT DATA

The subroutines in this category are responsibledading the three input files “Formation”,
“Tool” and “Experiment”, and for verifying the vdliity of the data contained in them. At this
first level verification, the parameters are checke be in the appropriate ranges and to be free

of any kind of incompatibilities. After the firsthecking is performed, the experiment



parameters, control flags and common memory regammgaining the model parameters are
initialized. At this point a second level verificat of the data is performed. In this second
verification, inappropriate settings than can léacn algorithm failure or to an invalid model

representation are looked for.

EXECUTION FAILURE CONTROL

The subroutines in this category are responsible hflandling errors and warning reports
generated by any of the subroutines in the progreinis is mainly done by the subroutine
Failure report that is called when a problem is detected. Thkngasubroutine provides and
error code or a warning code that is then match#davmessage number, displayed in the screen
and stored in a failure log. At the end of the paog execution, if any warning or error was

reported, the failure log is saved in the outplet ‘frailure_report”.

Errors are generally reported when the executicth@fprogram cannot be physically o logically
continued; for example, an overflow condition oced;r a matrix inversion could not be
completed, invalid input data was provided, efiche occurrence of an error always results in the
immediate termination of the program execution.t@nother hand, warnings are reported when
certain conditions that can lead to an algorithitufa or to an invalid model representation
occur; for example, an extremely high frequencyhsiiat the wave lengths are comparable to
the segment length size, invalid measurement drdefinitions that can lead to invalid result or

to a zero reading, etc...

OUTPUT DATA FORMATTING AND SAVING

The subroutines in this category are responsibidofonatting the output data and saving it into
the appropriate output files. As it was explainedobe, six different types of output files exist.
Most of them are only generated upon request bggusiie control flags in the input file
“Experiment”. On the other hand, the tool readiags always saved into either the output file
“Electric Log” or “Inversion Data”. This last is gngenerated when input data for the inverse

problem is desired; such a file also includes imfation about the tool and the earth formation.



MODULE 3: ELECTROMAGNETICS

The electromagnetics module is common for both tH&irect_problem” and the
“Inverse_problem” programs. It constitutes the catagional implementation of the procedure
described in [2] by using the methodology presentdd] and [5]. Basically, it is responsible for
calculating the set of coefficientdR(n) that represents the solution of the time hanimelectric

logging problem for the basic current element dbscrin [2].

The principal subroutine in this module is the switine dRCOMP. All other subroutines are
transparent to the main program in the sense tiegtdre only called by subroutines inside the
same module. Figure 2 presents a diagram that stim@sahe procedure idRCOMP and its

interaction with the most important subroutineshi@ module.



Initialization > Fast integration | and |
Y LOOP:n=0,1,2,3
Initialization
R(n) = Interpolatecf *1 Filter] + Analg/ti]
Y LOOP: n=4,5,6....500
Initialization
2R(n) = Interpolated *] Filterl + Analgti]
I n = nlimit => | Fast integration II!
Analitic =0
Y
Return [=€ If required, creates file "ZR(nt)"

Figure 2: Main procedure in the electromagneticslne

As it can be seen from figure 2, after the inigation of parameters, the fast integration routines
are called to compute integrals | and Il (dotteckdsoin figure 2 represent calls to other
subroutines or functions). | and Il are a cosing arsine transform integrals respectively; for a
more detailed description refer to [4]. The fasegration algorithms use the functioniegrand
which, accord-ing to the information contained @ tommon memory regions of the module,
provides the appropriate values for the integratibimose values are computed by recursively

using the set of functiorgkk(m,n) , gii(m,n) , fki(m,n) anddki(m,n) that are described in [6].

Next, in figure 2, the computation of the valud?(0), AR(1), AR(2), AR(3) is performed. As it
can be seen from [4], th&R(n) values are approximated by a discrete conwuiutetween the
results of the integrals and two filters. The sampgb be convolved are obtained by calling the

subroutinesINTERP, which interpolates the fast integration subrautoutputs; andFILTER,

7



which provides the appropriated filter samples. Tumection ANALIT provides the analytically

computed offset value resulting from the way k@nputed (see details in [4]).

The initialization step in each cycle of the loap responsible for setting the appropriated
sampling period to be used in the convolutions.tTihanecessary because the functions to be
convolved present rapid variations close to thgioriso, for thos@&R(n)’s with small values of

n, very small sampling periods are required; wkolelarger values of n, more larger sampling

periods can be used without compromising the result

In the second loop of figure 2, computationA®¥(n) for n = 4,5,6... 500 is performed. Here, the
procedure is exactly the same, except that whetaioelimit value of n is reached the fast
integration subroutine is called again in ordecémpute a new cosine transform (integral IlI).
The new integral values, along with a differentefi] are used instead of Il for obtaining the
remainingAR’s. This is done to improve the performance of éhniginal algorithm; for more

details see [5].

Finally, if it was requested by the user, the coteguresults are saved into the output file
“AR(n)” by calling the subroutindR_ OUTPUT in the i/o&control module.

MODULE 4: LINEAR_ALGEBRA

The linear_algebra module is also common for bbéh“Direct_problem” and the “Inverse_pro-
blem” programs. It constitutes the computationgblementation of the procedure described in
[3]. Basically, it uses the method of moments tpragimate the logging device’s response as a
linear combination of the basic current elemengsponse. So, the results generated in the

electromagne-tics module are used to compute tgerig device’s response.



The principal subroutine in this module &®COMP. All other subroutines, except
Impedance_Mo-del that will be discussed later, are transparetitéanain programaCOMP is
responsible for calling the appropriate tool's ialization and simulation subroutines. Five
different tool simulation subroutines exist, these @ahe generic tool, the 2-electrodes tool
(symmetric case and general case) and the latefolmgLLS tool (symmetric case and general
case). The generic tool subroutine is capable lofrgpthe linear algebra problem for almost any
tool configuration; but, for the same reason, akkof the speed and efficiency of an specific
tool's algorithm. On the other hand, the other feubroutines are customized for handling

specific type of tools and constitute more effitiand faster algorithms.

Figure 3 summarizes the procedure of the genedacalgorithm. The basics of the other four
algorithms are mainly the same, with small variaicand simplifications according to the
specific tool characteristics. For a more detaitédrmation on each of the tool algorithms, refer
to [1], [2], [7] and [8].

Y

Initialization Obtains the coefficients of matrix [dPcogff]

Y

Obtains the coefficients of matrix [C] and vecip

Y

Computes the unkonwn current vecloV = [C]'l * b

Y




Figure 3: Linear algebra problem algorithm for ¢fameric logging tool.

As it can be seen from figure 3, the algorithmtsthy obtaining the coefficients for two matrices
[dPcoeff] and [C]. The coefficients of [dPcoeffleacomputed by using the tool's configuration
and the method of moments’ current equations. Tdefficients of [C] are obtained from the

coefficients of [dPcoeff] by using the method of ments’ potential equations, as well as the

system equations. For details refer to [8].

Then, by inverting matrix [C], all the unknown cants in the tool model are computed, which
allows the subsequent computation of the poterdiierences between the centers of all
consecutive segments in the model. This is achibyadultiplying the matrix [dPcoeff] and the
computed current vectoEV, as it is shown in figure 3. Once the potentidfedences are
known, the tool measurement and any other requitgput parameter can be easily obtained by
discrete integration. Finally, if it was requestld the user, the output file “Tool_output”
containing the tool's potential and current digitibns is created by calling the i/o&control

module.

The other important procedure in the linear_algahoadule is the subroutinenpedance Model .
This subroutine is directly called by the main peoyg when the computation of a circuit analog
has been requested by the user. What this subeobssically does is to call repeatedly the
generic tool algorithm while setting different cmpfrations of the given logging device. This is
done in such a way that the mutual impedancesh®circuit analog can be computed from the
obtained measurements. After all the impedances bagn obtained, their values are saved into

the output file “Circuit Model”.

USER'’S INTERFACE

10



In order to simplify the process of generatingitiput files and to make the using of the program
easier, an interface program has been developes.nidin functions of this program can be

summarized as follows:

A.- To provide a friendly environment for the segtiand definition of the input parameters,

making data verification and corrections more senpl

B.- To offer a set of utilities for performing cagmient tasks as creating backups files, changing

the format of the data, printing and plotting the#tput data, etc...

C.- To provide a common platform for the use of theect_problem” and “Inverse_problem”

programs.

D.- To detect and notify the existence of any ir/ahput data in order to avoid launching the

programs under conditions that will result in emgports.

TECHNICAL SPECIFICATIONS

All the “Direct_problem” program subroutines wheeded in FORTRAN 77 and compiled with
the ABSOFT FORTRAN 77 For Power Macintosh compifdso, some preexistent subroutines
that where available in the literature have beesdudhat is the case of the fast integration

functions and the matrix inversion subroutine.

The Macintosh Runtime Window Environment, which icluded in the compiler, was
employed. It consists of a collection of subroudirtieat provide a Macintosh-type interface by
using the Macintosh Toolbox routines and the Apmer-interface guidelines. For this reason,

the code of the “Direct_problem” program is notedity portable to other platforms different

11



than Macintosh (68xxx) or Power Macintosh (Powe®). Some modifications are required

in order to add portability to the current code.

In the actual setting of the program, it requirdowt 5 Mbytes of memory to run. This
requirement is related to the maximum size of Inggiool that the program can handled; it is
basically determined by the parametsitdMAX andNVMAX , which are defined in the header
file “Dimensions.inc”. By reducing these parametansl recompiling the program the run time
memory requirements can be dramatically reducedghier the maximum size of logging device
allowed will be reduced too. For more informatidoat these and other dimensional parameters

see [1].

The program’s interface has been developed by udymercard 2.3.5, which provides a very
convenient and flexible way to perform such a taBke interface can be either run from
Hypercard as a Stack or can be compiled into alstbome application. It is important to mention
that the program’s interface is not required fag tDirect_problem” program execution; it just
provides a friendly environment for handling thegmam in a very simple and easy way. Indeed,
the input files can be alternatively created byhgsany editor and the “Direct_problem” can be

directly launched by opening it or double-clickiog its icon.

FINAL NOTES

In the present report, a brief discussion aboutctraputational implementation of the direct
version of the time harmonic field electric loggipgpoblem have been presented. For a more
detailed an precise information please refer tooil{o the code files directly, which are fully

commented and will provide the most updated infdiomeabout the program.

REFERENCES

12



[1] Help & Information Stack.

[2] Bostick, F.; Smith, H. (1994), Propagationésfts in Electric Logging.

University of Texas at Austin.

[3] Update Report #1: The Direct Problem.

[4] Update Report #5: Solution of the Potentialf&iénce Integral by using Exponential
Windowing.

[5] Update Report #6: Enhanced Method for the $Smubf the Potential Difference Integral.

[6] Update Report #8: Recursive Computation ofDieeivatives.

[7] Update Report #9: Modeling of Laterolog Systems

[8] Update Report #10: Modeling of Generic Loggbegvices.

13



