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INTRODUCTION 

 

This report describes how to solve the direct version of the time harmonic field electric logging 

problem for a laterolog system. The technique is basically the same used for the simple 2-

electrode logging tool [1]. Because the same kind of basic current elements are used, the 

electromagnetic part of the problem is exactly the same [2], but the linear algebra part is different 

due to the more complex structure of laterolog systems. For this reason, most of the attention will 

be directed to the linear algebra problem. A detailed analysis of the conditions and properties of 

laterologs that lead to the required set of equations will be presented. For practical purposes, the 

particular case of a 9-electrode laterolog system will be considered. 

 

 

THE 9-ELECTRODE LATEROLOG 

 

A very important kind of logging tools are the so called focused tools. The main purpose of this 

type of tools is to obtain a more accurate measurement of the formation’s resistivity by avoiding 

the effects of the borehole and the surrounding formations. Focused tools can be separated into 

two groups: divergent logs, that achieve focusing by using an arrangement of measuring 

electrodes; and laterologs, that achieve it by using an arrangement of current electrodes [3],[4].  

 

For simplicity, only the 9-electrode laterolog in its shallow configuration is going to be 

presented. Figure 1 presents an schematic view of a 9-electrode shallow laterolog system (LLs); 

the left side of it shows the internal circuit of the system, and the right side shows the current 

distribution in an homogeneous medium. As it can be seen from figure 1, the LLs is composed by 

four potential monitoring electrodes, M1, N1, M2 and N2; two large current return electrodes, B1 

and B2; and three current injection electrodes, A1 and A2 that are called the bucking electrodes 
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and inject the bucking current Ia into the formation, and A0 that is called the survey electrode 

and injects the survey current Io. As it can also be seen from figure 1, some of these electrodes 

are short circuited in pairs; B1 is short circuited to B2, A1 to A2, M1 to M2 and N1 to N2. 

 

The operation of the LLs is very simple. It achieves focusing by varying the auxiliary or bucking 

current Ia until the potential difference between electrodes M1 and N1 (or equivalently M2 and 

N2) is zero. When this potential is zero the tool is said to be in its normal focused condition, and 

the survey current Io is forced inside the formation as it is shown in the right side of figure 1. 
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Figure 1: 9-electrode Shallow Laterolog (LLs): Circuit and Current Distribution. 

 

When the formation and/or the borehole parameters change the survey current beam deviates 

from the normal focused condition. It can be by diverging or converging, depending upon the 

new borehole-formation characteristics. In the case that the beam diverges, a positive potential 

would be measured between the monitoring electrodes (M1 and N1) and the controller would 
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respond by increasing the bucking current Ia until the system reaches the normal focused 

condition again. On the other hand, in the case that the beam converges, a negative potential 

would be measured between the monitoring electrodes and the controller would decrease the 

bucking current until reaching the normal focused condition. 

 

Because all four potential monitoring electrodes are at the same potential while operating under 

normal focused condition, any of them can be used for recording the tool measurement. Then, for 

example, the tool measurement could be the potential difference between M1 and B1. 

 

It is important to notice that in the solution of the time harmonic field electric logging problem 

for a laterolog system by using the method of moments [1], in addition to the current strengths of 

the current elements, the bucking current Ia is also an unknown variable that must be solved for. 

In the following, we are going to present the different kind of equations that must be considered 

in the modeling of a laterolog system. Although those kind of equations are valid for any 

laterolog system, we are going to concentrate specifically on the LLs.  

 

 

THE LINEAR ALGEBRA PROBLEM IN LATEROLOG SYSTEMS 

 

Once the electromagnetic problem is solved for the basic current element, the overall response of 

the logging system can be computed by linearly combining a large amount of current elements. 

This procedure is called the method of moments and was already used in the modeling of the 

simple (2-electrode) logging tool [1]. 

 

In the following sections, the equations that describe the behavior of a laterolog system are 

described. For simplicity, the representative 9-electrode shallow laterolog system presented in 

figure 2 is going to be considered. It is important to mention that this tool constitutes just an 

explanatory model and it does not represent an actual tool. Otherwise, the tool shown in figure 1 
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offers a better representation of relative sizes and spacing of the electrodes in an actual LLs 

system. 
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Figure 2: LLs Model to be Considered for Illustrating the Linear Algebra Problem. 

 

As it can be seen from figure 2, the size of the tool to be considered is 24 segment lengths. So, 23 

current elements are required for modeling it (remember that the size of each current element is 

two segment lengths). Those current elements are going to be enumerated as 1 to 23 from left to 

right and their unknown current strengths as I1 to I23 respectively. Notice also from figure 2 that a 

total of eight current sources of unknown intensities interconnect the consecutive electrodes. 

Also, as it was mentioned before, the bucking current Ia is unknown; then, the total number of 

unknowns for the tool in figure 2 add to 32. Therefore, a total of 32 independent equations must 

be found. 

 

In solving the linear algebra problem for a laterolog system, five different kinds of equations 

must be written. Two of them are the same kind of equations used in the case of the simple tool 

[1] and are going to be referred as the Method of Moment equations. The other three kind of 

equations are related to the specific characteristics of the laterolog tool configuration and are 

going to be referred as the System equations. 

 

 

THE METHOD OF MOMENT EQUATIONS 
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Let us start with the Method of Moment equations. Two kind of Method of Moment equations 

are to be considered, they are the electrode equations and the insulator equations. In the electrode 

equations, the potential difference between centers of consecutive segments over the electrode 

surfaces are equated to zero [1]. That is because the electrodes are supposed to be made of a 

perfect conductor. The number of equations in each electrode will depend on the size of the 

electrode. For an electrode of n segment lengths, there will be n-1 independent equations. Notice 

from figure 2 that the potential monitoring electrodes are only one segment in length, while all 

others are two segments in length. Then, no equation can be written for electrodes N1, M1, N2 

and M2; and only one electrode equation can be written for electrodes B1, B2, A0, A1 and A2. 

For example, the equation related to electrode B1 would be:    

0 = I1 ∆R0 + I 2 ∆R1 + I 3 ∆R2 + ...+ I 23∆R22  (1) 

where the I’s are the current strengths of the current elements and the ∆R’s are the 

electromagnetic-parameter-dependent resistive quantities defined by equation (49) in [2]. 

 

Equation (1) simply states that the potential difference between the centers of segments 1 and 2 is 

equal to zero; and each term in (1) refers to the contribution of a particular current element to that 

potential. So, I n ∆Rk  refers to the contribution of nth current element. Notice that the index of 

each ∆R is defined by the distance, in segment lengths, between the contributing current element 

and the segment in which the potential is being measured. Then, in the particular case of (1), all 

the terms I n ∆Rk  satisfy k=n-1. 

 

For practical reasons, let us introduce a more compact notation in order to simplify the way of 

writing the equations. Let us define the parameter ∆Pn as the potential difference between the 

center of segments n and n+1. More formally, ∆Pn  can be defined as follows: 

∆Pn = ∆Ri− n I i
i =1

23

∑  (2) 

where it is important to remember the even symmetry of the ∆R’s, that is ∆R−n = ∆Rn  [2]. 
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Notice that by using this definition, (1) can be expressed just as: 

∆P1 = 0 (3) 

 

In this way, the five electrode equations are given by: 

B1: ∆P1 = 0 (4.a) 

B2: ∆P23 = 0 (4.b) 

A0: ∆P12 = 0 (4.c) 

A1: ∆P5 = 0 (4.d) 

A2: ∆P19 = 0 (4.e) 

 

In the insulator equations, the current strengths of the current elements in between two electrodes 

are equated to the current flowing trough the tool axis [1]. That is because the tool surface in 

between electrodes is supposed to be made of a perfect insulator, so there must not be radial 

current flow. As it can be seen from figure 2, there are eight insulated zones in the tool under 

consideration. Let us refer to each of those zones by using the pair of electrodes they are in 

between of. Then, for example, the left most insulated zone is going to be referred as B1A1. The 

number of equations in each insulated region will depend on the size of the region. For an 

insulated region of n segment lengths, there will be n+1 independent equations. According to 

this, as it can be seen from figure 2, three insulator equations can be written for the insulated 

regions B1A1 and A2B2, and two can be written for each of the other six insulated regions. They 

are given by: 

B1A1: I 2 = I3 = I 4 = Is (5.a) 

A1N1: I 6 = I7 = I t  (5.b) 

N1M1: I 8 = I 9 = I u  (5.c) 

M1A0: I10 = I11 = Iv  (5.d) 

A0M2: I13 = I 14 = I w  (5.e) 

M2N2: I15 = I16= I x  (5.f) 

N2A2: I17 = I18 = I y  (5.g) 
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A2B2: I 20 = I 21= I22 = Iz  (5.h) 

 

At this point we have only 23 equations out of the required 32. 

 

 

THE SYSTEM EQUATIONS 

 

Let us now write the System equations to complete the set of equations. As it was mentioned 

before, the System equations are defined by the specific laterolog tool configuration and 

operating conditions. Three different kinds of System equations are to be considered, they are the 

short-circuit potential equations, the short-circuit current equations and the control condition 

equations.  

 

In the short-circuit potential equations the fact that short-circuited electrodes are forced to be at 

the same electric potential is exploited. Let us write the first of such equations by considering the 

short-circuited electrodes M1 and M2 (see figure 2). Due to the presence of the short circuit, 

electrodes M1 and M2 must be at the same potential; that means that the potential difference 

between segments 10 and 15 must be zero. Using the notation introduced in (2), this can be 

expressed as: 

∆P10 + ∆P11 + ∆P12 + ∆P13 + ∆P14 = ∆Pi =
i =10

14

∑ 0   (6.a) 

 

In the same way, equations for the other short-circuited electrodes can be written as follows: 

N1N2:  ∆Pi =
i = 8

16

∑ 0  (6.b) 

A1A2:  ∆Pi =
i = 6

18

∑ 0  (6.c) 

B1B2:  ∆Pi =
i = 2

22

∑ 0  (6.d) 
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These equations can be simplified a little more. First, notice that all the terms in (6.a) are 

contained in (6.b), all the terms in (6.b) are contained in (6.c) and so on. Also, notice from (4) 

that some ∆P terms are equal to zero. By making all these substitutions, the short-circuit potential 

equations can finally be rewritten as: 

M1M2:  ∆P10 + ∆P11 + ∆P13 + ∆P14 = 0 (7.a) 

N1N2:  ∆P8 + ∆P9 + ∆P15 + ∆P16 = 0 (7.b) 

A1A2:  ∆P6 + ∆P7 + ∆P17 + ∆P18 = 0 (7.c) 

B1B2:  ∆P2 + ∆P3 + ∆P4 + ∆P20 + ∆P21 + ∆P22 = 0  (7.d) 

 

In the short-circuit current equations the fact that currents can freely circulate trough the short-

circuits is exploited. These equations are in fact current balance equations because for writing 

them the Kirchoff’s Law of Currents is applied to each node in the tool. Notice from figure 2 that 

due to the short circuits, the 9 electrodes of the tool are reduced to 5 actual nodes. Notice also 

that, in addition to the currents supplied by the current sources, all currents injected and collected 

by the tool into and from the formation must be included in these equations. As it can be seen 

from figure 1, while electrodes A1 and A2 inject the bucking current Ia and A0 injects the survey 

current Io, electrodes B1 and B2 collect Ia+Io. On the other hand, the potential monitoring 

electrodes M1, M2, N1, N2 do not inject or collect any current. Then, by using these facts and 

applying Kirchoff’s Law of Currents to each of the 5 nodes in figure 2, the short-circuit current 

equations are obtained: 

A0: I v − I w − I 0 = 0 (8.a) 

M1M2: I u + Iw − I v − I x = 0 (8.b) 

N1N2: I t + I x − I u − I y = 0  (8.c) 

A1A2: I s + I y − I t − I z − Ia = 0 (8.d) 

B1B2: I 0 + I a + I z − Is = 0 (8.e) 

where equation (8.a) is actually a linear combination of the others. To prove this, let us solve 

(8.e) for Io+Ia and replace it into (8.d), then solve (8.d) for Io and replace it into (8.c) and so on. 
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By doing that, it can be seen that (8.a) reduces to the trivial equality Io=Io; so (8) can be rewritten 

in terms of only four equations as follows: 

I s − I z = I 0 + I a  (9.a) 

I t − I y = I 0  (9.b) 

I u − I x = I0  (9.c) 

I v − I w = I 0  (9.d) 

 

Finally, in the control condition equations, the restrictions required for making the tool to operate 

in its normal focused condition are imposed. In this case those restrictions are imposed just by 

equating the potential between electrodes M1 and N1 to zero. Alternatively, the potential 

between M2 and N2 can be done zero.  

M1N1: ∆P8 + ∆P9 = 0 (10) 

or, M2N2: ∆P15 + ∆P16 = 0 (11) 

Notice that either (9) or (10) must be used but not both of them. In fact, by including both of 

them no additional information is added to the set of equations; notice that the combination of 

(10) and (11) leads to (7.b). 

 

At this point we already have all the required equations: 23 Method of Moment equations (the 5 

electrode equations given in (4) and the 18 insulator equations given in (5)) and 9 System 

equations (the 4 short-circuit potential equations given in (7), the 4 short-circuit current equations 

given in (9) and the control condition equation given by either (10) or (11)). That accounts for a 

total of 32 linearly independent equations.  

 

 

SIMPLIFICATION OF THE SET OF EQUATIONS 

 

From the previous section, we obtained a set of 32 equations with 32 unknowns that can be 

solved, but programming a set like that can be quite involving. For this reason let us first attempt 
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to simplify it a little more by using some algebraic manipulations and let us see if it can be 

written in a more compact form.  

 

First of all, notice that (5) can be used to eliminate the unknown current source intensities in (9). 

By doing so and rearranging some terms, (9) can be rewritten as follows: 

I 20 = I2 − Ia − I0  (12.a) 

I17 = I 6 − I 0 (12.b) 

I15 = I8 − I0  (12.c) 

I13 = I10 − I 0  (12.d) 

 

Next, (5) and (12) can be used to collect some terms in the potential difference expressions. For 

example, by replacing (5) and (12) into (4.a) the following expression for ∆P1 is obtained: 

∆P1 = I1 ∆R0 + I 2 ∆Ri
i =1

3

∑ + ∆Ri
i =19

21

∑
 
 
  

 
+ I5 ∆R4 + I6 ∆Ri

i =5

6

∑ + ∆Ri
i =16

17

∑
 
 
  

 
 

+ I8 ∆Ri
i= 7

8

∑ + ∆Ri
i =14

15

∑
 
 
  

 
+ I10 ∆Ri

i =9

10

∑ + ∆Ri
i=12

13

∑
 
 
  

 
+ I12 ∆R11  

+ I19∆R18 + I23 ∆R22 − I 0 ∆Ri
i =12

17

∑ + ∆Ri
i =19

21

∑
 
 
  

 
− I a ∆Ri

i =19

21

∑  (13) 

 

In the same way, similar expressions for all the ∆Pn  (n =1, 2, ... 23) can be written. And, what is 

much better, a general expression can be written as follows: 

∆Pn = I1 ∆R1− n + I 2 ∆Ri
i =2− n

4−n

∑ + ∆Ri
i =20− n

22− n

∑
 
 
  

 
+ I 5 ∆R5−n + I 6 ∆Ri

i = 6−n

7− n

∑ + ∆Ri
i =17−n

18− n

∑
 
 
  

 
 

+ I8 ∆Ri
i =8− n

9− n

∑ + ∆Ri
i=15− n

16− n

∑
 
 
  

 
+ I10 ∆Ri

i =10−n

11−n

∑ + ∆Ri
i=13−n

14− n

∑
 
 
  

 
+ I 12∆R12− n  

+ I19∆R19− n + I23 ∆R23− n − I 0 ∆Ri
i =13− n

18− n

∑ + ∆Ri
i =20− n

22−n

∑
 
 
  

 
− I a ∆Ri

i =20− n

22− n

∑  (14) 

for n = 1, 2, 3, ..., 23. 
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Notice that equation (14) provides an expression for the potential difference between the centers 

of any two consecutive segments along the tool surface. Also, as it can be seen form (14), the 

total number of unknowns has been reduced to 10. Then, only 10 linearly independent equations 

are required now; and those are the 5 electrode equations, the 4 short-circuit potential equations 

and the control condition equation. By recalling the fact mentioned before that (7.b) was actually 

a linear combination of (10) and (11), the set of equations can be rewritten as follows: 

∆P1 = ∆P5 = ∆P12 = ∆P19 = ∆P23 = 0 (15.a) 

∆P8 + ∆P9 = ∆P15 + ∆P16 = 0  (15.b) 

∆P10 + ∆P11 + ∆P13 + ∆P14 = 0  (15.c) 

∆P6 + ∆P7 + ∆P17 + ∆P18 = 0 (15.d) 

∆P2 + ∆P3 + ∆P4 + ∆P20 + ∆P21 + ∆P22 = 0 (15.e) 

where the ∆P’s are given by (14). 

 

Finally, (15) can be written in matrix form as: 

∆R[ ] I = b  (16) 

where ∆R[ ] is a 10x10 matrix which elements are given by combination of ∆R’s according to 

(14) and (15), I  is the unknown column vector I1 I 2 I 5 I6 I 8 I10 I12 I19 I 23 I a[ ]T
andb  is a column 

vector which elements are defined by the survey current Io times a combination of ∆R’s. 

 

At this point, programming the set of equation is very simple. The unknown vector can be 

computed by directly inverting the ∆R[ ] matrix. 

 

 

THE SYMMETRIC TOOL CASE 

 

Additional simplifications can be performed to the set of equations by assuming that certain 

symmetry conditions are held.  

 



 12 

Although it is not always true in the practice, some times the laterolog system happens to be 

symmetric about its central electrode A0 (see figure 1). That means that the lower side of the tool 

is a mirror image of the upper side of the tool. This is going to be referred as the tool symmetry 

condition. In addition to that, if the borehole and formation parameters are assumed to be 

constant in the vertical direction, which is going to be referred as the formation symmetry 

condition, then the symmetry can be exploited by using the Bisection theorem. 

 

When both the tool and the formation symmetry conditions are met, the following assertions 

happen to be true: 

I n = − I24− n for n = 1,2,...,12 (17.a) 

∆Pn = − ∆P24−n for n =1,2,...,12 (17.b) 

I t = − I y = Iu = − I x = I v = − Iw =
I 0

2
 (17.c) 

I s = − Iz =
I 0 + I a

2
 (17.d) 

 

Although the equations in (17) specifically refers to the model tool presented in figure 2, similar 

equations can be easily written for any symmetric tool configuration. The basic idea is to make 

currents and potential differences to be symmetric about the center of the tool. It is important to 

notice that the symmetry conditions make the presence of the short circuits in the LLs system to 

be redundant; that is, that they can be removed without altering the currents and the potentials. In 

fact, as it is going to see next, the use of (17) reduces the short circuit potential equations to 

trivial equalities.  

 

By replacing (17) into (15) many of the equations become trivial and the set is then reduced to 

the following set of three linearly independent equations: 

∆P1 = 0 (18.a) 

∆P5 = 0 (18.b) 

∆P8 + ∆P9 = 0 (18.c) 

where, after replacing (17) into (14), the ∆P’s are given by: 
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∆Pn = I1 ∆R1− n − ∆R23−n( )+ I5 ∆R5− n − ∆R19−n( ) 

+
Ia

2
∆Ri

i =2− n

4−n

∑ − ∆Ri
i =20− n

22− n

∑
 
 
  

 
+

I 0

2
∆Ri

i= 2− n

4 −n

∑ + ∆Ri
i =6− n

11−n

∑ − ∆Ri
i=13− n

18− n

∑ − ∆Ri
i =20− n

22− n

∑
 
 
  

 
 (19) 

for n = 1, 2, 3, ..., 23. 

 

Notice from (19) that the number of unknowns have also been reduced to three. Then, by 

substituting (19) into (18) the set can be finally written in matrix form as in (16), with: 

∆R[ ]=

∆R0 − ∆R22( ) ∆R4 − ∆R18( ) 1

2
∆Ri

i=1

3

∑ − ∆Ri
i =19

21

∑
 
 
  

 

∆R−4 − ∆R18( ) ∆R0 − ∆R14( ) 1

2
∆Ri

i= −3

−1

∑ − ∆Ri
i =15

17

∑
 
 
  

 

∆Ri
i = −8

−7

∑ − ∆Ri
i =14

15

∑
 
 
  

 
∆Ri

i =−4

−3

∑ − ∆Ri
i =10

11

∑
 
 
  

 
1

2
∆Ri

i= −6;− 7

−4;−5

∑ − ∆Ri
i=12 ;11

14 ;13

∑
 

 
  

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (20.a) 

b = −
I 0

2

∆Ri
i =1

3

∑ + ∆Ri
i = 5

10

∑ − ∆Ri
i =12

17

∑ − ∆Ri
i=19

21

∑
 
 
  

 

∆Ri
i =−3

−1

∑ + ∆Ri
i=1

6

∑ − ∆Ri
i= 8

13

∑ − ∆Ri
i =15

17

∑
 
 
  

 

∆Ri
i = −6;− 7

−4;−5

∑ + ∆Ri
i = −2;− 3

3;2

∑ − ∆Ri
i = 5; 4

10; 9

∑ − ∆Ri
i =12;11

14;13

∑
 

 
  

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (20.b) 

and, I = I1 I5 I a[ ]T
 (20.c) 

where the double indexed summations must be interpreted as follows: 

∆Ri
i = a; c

b; d

∑ = ∆Ri
i =a

b

∑ + ∆Ri
i = c

d

∑  (21) 

 

THE GENERAL SYMMETRIC TOOL CASE 

 

The set of equations described by (18) and (19) refers to the particular case of the model tool 

presented in figure 2. Nevertheless, by looking carefully to the currents and the limits of the 

summations at every term in (19), it can be noticed that there exists a close relationship between 

those parameters and the tool configuration. Also, it can be noticed that the equations in (18) 
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only make reference to the potentials over the electrodes and the control condition in one half of 

the tool. By exploiting those facts, we will be able to write the equations for an arbitrary LLs 

system which satisfies both of the symmetry conditions described before. 

 

Figure 3 presents the specifications of an arbitrary symmetric LLs system of N segments in 

length. Notice that the short circuits have been omitted in figure 3. That is because, as it was 

mentioned before, when the symmetry conditions are held, the short circuits do not alter the 

system operation. Also, all the distances defined in figure 3 are indicated in numbers of segment 

lengths. So, for example, the size of electrode A1 is (NAE-NAS) segments. 

 

B1 A1 N1 M1 A0

NBE
NAS

NAE

NNE
NNS

NMS
NME

NA0
N/2

C
en

te
r 

o
f t

h
e 

to
o

l

...

Io/2(Io+Ia)/2 Io/2Io/2

 

Figure 3: General Symmetric Tool Case. 

 

By using the notation presented in figure 3 and the observations mentioned before, the set of 

equations for the general symmetric tool case can be written as follows: 

∆Pk = 0 for 1≤ k < NBE (22.a) 

∆Pk = 0 for NAS < k < NAE  (22.b) 

∆Pk = 0 for NNS< k < NNE (22.c) 

∆Pk = 0 for NMS < k < NME  (22.d) 

∆Pk = 0 for NA0 < k < N /2 (22.e) 
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∆Pi = 0
i = NNE

NMS

∑  (22.f) 

where the ∆P’s are given by: 

∆Pn = ∆Ri − n − ∆RN − i −n( )
i =1

NBE−1

∑ I i + ∆Ri − n − ∆RN− i −n( )
i =NAS+1

NAE −1

∑ I i + ∆Ri− n − ∆RN−i − n( )
i = NNS+1

NNE−1

∑ I i  

+ ∆Ri− n − ∆RN −i − n( )
i= NMS+1

NME−1

∑ I i + ∆Ri − n − ∆RN − i −n( )
i= NA0+1

N / 2−1

∑ I i + ∆Ri− n
i =NBE

NAS

∑ − ∆RN − i− n
i= NAS

NBE

∑
 
 
  

 
Ia

2
 

+ ∆Ri − n
i = NBE

NAS

∑ + ∆Ri − n
i = NAE

NNS

∑ + ∆Ri − n
i = NNE

NMS

∑ + ∆Ri −n
i = NME

NA0

∑
 
 
  

 
I0

2
  

− ∆RN− i −n
i = NA0

NME

∑ + ∆RN − i− n
i =NMS

NNE

∑ + ∆RN − i −n
i= NNS

NAE

∑ + ∆RN− i −n
i =NAS

NBE

∑
 
 
  

 
I0

2
 (23) 

for n = 1, 2, 3, ..., N-1. 

 

It can be easily seen from (22) and (23) that the number of equations is equal to the number of 

unknowns. Then, by replacing (23) into (22) the system can be rewritten in matrix form an solved 

by a direct matrix inversion. 

 

 

CONCLUSIONS 

 

In the present report, the basic methodology for modeling a laterolog system has been discussed. 

Although the particular case of the LLs system was studied, the results obtained here can be 

easily extrapolated for the analysis of other type of laterolog systems. In fact, the five types of 

equations described here are applicable to any class of laterolog tool. 

 

As it could be seen, by exploiting the symmetry properties of both the tool and the formation, the 

linear algebra problem can be greatly simplified. In general, the number of equations will be 

reduced to N/2-2; where N is the original number of equations without taking advantage of the 

symmetry conditions. Although the symmetry conditions not always happen in the practice, the 

use of symmetry when it is possible will notably reduce the time of computation.   
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