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INTRODUCTION

This report describes how to solve the direct wersf the time harmonic field electric logging

problem for a laterolog system. The technique isidadly the same used for the simple 2-

electrode logging tool [1]. Because the same kificb@sic current elements are used, the
electromagnetic part of the problem is exactlysame [2], but the linear algebra part is different
due to the more complex structure of laterologesyist For this reason, most of the attention will
be directed to the linear algebra problem. A dethdnalysis of the conditions and properties of
laterologs that lead to the required set of eqnatwill be presented. For practical purposes, the

particular case of a 9-electrode laterolog systelirbe considered.

THE 9-ELECTRODE LATEROLOG

A very important kind of logging tools are the sled focused tools. The main purpose of this
type of tools is to obtain a more accurate measen¢mf the formation’s resistivity by avoiding
the effects of the borehole and the surroundingnétions. Focused tools can be separated into
two groups: divergent logs, that achieve focusing using an arrangement of measuring

electrodes; and laterologs, that achieve it byguiamarrangement of current electrodes [3],[4].

For simplicity, only the 9-electrode laterolog its ishallow configuration is going to be
presented. Figure 1 presents an schematic viewdeélactrode shallow laterolog system (LLs);
the left side of it shows the internal circuit detsystem, and the right side shows the current
distribution in an homogeneous medium. As it casdzn from figure 1, the LLs is composed by
four potential monitoring electrodes, M1, N1, M2iak2; two large current return electrodes, B1

and B2; and three current injection electrodesaAd A2 that are called the bucking electrodes



and inject the bucking current la into the formatiand AO that is called the survey electrode
and injects the survey current lo. As it can alecsben from figure 1, some of these electrodes
are short circuited in pairs; B1 is short circuited32, Al to A2, M1 to M2 and N1 to N2.

The operation of the LLs is very simple. It ach&¥ecusing by varying the auxiliary or bucking
current la until the potential difference betwedgcgodes M1 and N1 (or equivalently M2 and
N2) is zero. When this potential is zero the tasadaid to be in its normal focused condition, and

the survey current lo is forced inside the formas it is shown in the right side of figure 1.
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Figure 1: 9-electrode Shallow Laterolog (LLs): @itcand Current Distribution.

When the formation and/or the borehole parameteamge the survey current beam deviates
from the normal focused condition. It can be byedgjing or converging, depending upon the
new borehole-formation characteristics. In the das¢ the beam diverges, a positive potential

would be measured between the monitoring electréidsand N1) and the controller would
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respond by increasing the bucking current la uthtd system reaches the normal focused
condition again. On the other hand, in the case ttiea beam converges, a negative potential
would be measured between the monitoring electraahesthe controller would decrease the

bucking current until reaching the normal focuseddition.

Because all four potential monitoring electrodes atrthe same potential while operating under
normal focused condition, any of them can be usedecording the tool measurement. Then, for

example, the tool measurement could be the potelitierence between M1 and B1.

It is important to notice that in the solution bkttime harmonic field electric logging problem
for a laterolog system by using the method of mdsgl], in addition to the current strengths of
the current elements, the bucking current la is als unknown variable that must be solved for.
In the following, we are going to present the dfe kind of equations that must be considered
in the modeling of a laterolog system. Althoughsthdind of equations are valid for any

laterolog system, we are going to concentrate §pakty on the LLs.

THE LINEAR ALGEBRA PROBLEM IN LATEROLOG SYSTEMS

Once the electromagnetic problem is solved fobidwc current element, the overall response of
the logging system can be computed by linearly domg a large amount of current elements.
This procedure is called the method of momentsvaasl already used in the modeling of the

simple (2-electrode) logging tool [1].

In the following sections, the equations that déscthe behavior of a laterolog system are
described. For simplicity, the representative @tetele shallow laterolog system presented in
figure 2 is going to be considered. It is importémtmention that this tool constitutes just an

explanatory model and it does not represent arabtdal. Otherwise, the tool shown in figure 1



offers a better representation of relative sized spacing of the electrodes in an actual LLs

system.
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Figure 2: LLs Model to be Considered for lllustrgtithe Linear Algebra Problem.

As it can be seen from figure 2, the size of tlot to be considered is 24 segment lengths. So, 23
current elements are required for modeling it (nerper that the size of each current element is
two segment lengths). Those current elements ang go be enumerated as 1 to 23 from left to
right and their unknown current strengthsam® 23 respectively. Notice also from figure 2 that a
total of eight current sources of unknown intemesitinterconnect the consecutive electrodes.
Also, as it was mentioned before, the bucking eurfa is unknown; then, the total number of
unknowns for the tool in figure 2 add to 32. Theref a total of 32 independent equations must

be found.

In solving the linear algebra problem for a lategokystem, five different kinds of equations
must be written. Two of them are the same kindqufagions used in the case of the simple tool
[1] and are going to be referred as the Method ofidnt equations. The other three kind of
equations are related to the specific charactesisii the laterolog tool configuration and are

going to be referred as the System equations.

THE METHOD OF MOMENT EQUATIONS



Let us start with the Method of Moment equationsoTkind of Method of Moment equations
are to be considered, they are the electrode @msaéind the insulator equations. In the electrode
equations, the potential difference between cerdkeronsecutive segments over the electrode
surfaces are equated to zero [1]. That is becaweselectrodes are supposed to be made of a
perfect conductor. The number of equations in eagebtrode will depend on the size of the
electrode. For an electrode of n segment lengtiese twill be n-1 independent equations. Notice
from figure 2 that the potential monitoring electes are only one segment in length, while all
others are two segments in length. Then, no equaao be written for electrodes N1, M1, N2
and M2; and only one electrode equation can beenrifor electrodes B1, B2, AO, A1 and A2.
For example, the equation related to electrode Bdldvbe:

0=1,AR,+1,AR, +1,AR, +...+1,,AR,, (1)
where the I's are the current strengths of the erurrelements and thaR’s are the

electromagnetic-parameter-dependent resistive tiggndefined by equation (49) in [2].

Equation (1) simply states that the potential défece between the centers of segments 1 and 2 is
equal to zero; and each term in (1) refers to tdmrdution of a particular current element to that
potential. So,l AR, refers to the contribution of nth current elemextice that the index of
eachAR is defined by the distance, in segment lengtetyéen the contributing current element
and the segment in which the potential is beingsuesl. Then, in the particular case of (1), all
the termsl | AR, satisfy k=n-1.

For practical reasons, let us introduce a more emmpotation in order to simplify the way of

writing the equations. Let us define the param&Egr as the potential difference between the

center of segments n and n+1. More formalf#, can be defined as follows:

n

AP, =D AR, I, )

where it is important to remember the even symmattheAR’s, that isAR_, = AR, [2].



Notice that by using this definition, (1) can bgmeessed just as:
AP =0 3)

In this way, the five electrode equations are givgn

B1: AR =0 (4.2)

B2: AF,,=0 (4.b)

AO: AR, =0 (4.0)
12

Al: AP, =0 (4.d)

A2: AP, =0 (4.e)
19

In the insulator equations, the current strengthtiecurrent elements in between two electrodes
are equated to the current flowing trough the tat [1]. That is because the tool surface in
between electrodes is supposed to be made of acpansulator, so there must not be radial
current flow. As it can be seen from figure 2, thare eight insulated zones in the tool under
consideration. Let us refer to each of those zdnessing the pair of electrodes they are in
between of. Then, for example, the left most ingaaone is going to be referred as B1Al. The
number of equations in each insulated region wélpehd on the size of the region. For an
insulated region of n segment lengths, there wallng-1 independent equations. According to
this, as it can be seen from figure 2, three irteulaquations can be written for the insulated

regions B1A1 and A2B2, and two can be written facteof the other six insulated regions. They

are given by:

B1AL: 1,=1,=1,=1, (5.a)
AINI: I =1,=1, (5.b)
NIML: [,=1,=1, (5.c)
M1AO: I,,=1,,= 1, (5.d)
AOM2: | ,=1,=1, (5.e)
M2N2: I, = 1= 1, (5.9)
N2A2: I, =1,=1, (5.9)



A2B2: 1,,=1,,=1,,= (5.h)

z

At this point we have only 23 equations out of thguired 32.

THE SYSTEM EQUATIONS

Let us now write the System equations to compleéeset of equations. As it was mentioned
before, the System equations are defined by theifgpdaterolog tool configuration and
operating conditions. Three different kinds of 8ystequations are to be considered, they are the
short-circuit potential equations, the short-citatiirrent equations and the control condition

equations.

In the short-circuit potential equations the fdwttshort-circuited electrodes are forced to be at
the same electric potential is exploited. Let ugenthe first of such equations by considering the
short-circuited electrodes M1 and M2 (see figure@)e to the presence of the short circuit,
electrodes M1 and M2 must be at the same potemtial; means that the potential difference
between segments 10 and 15 must be zero. Usingdfaion introduced in (2), this can be
expressed as:

14
AP, + AP, + AP, + AP+ AP, =Y AP =0 (6.2)

=10

In the same way, equations for the other shortited electrodes can be written as follows:

16

NIN2: > AP =0 (6.b)
i=8
18

A1A2: > AP =0 (6.C)
i=6
22

B1B2: ) AR =0 (6.d)

i=2



These equations can be simplified a little morestFinotice that all the terms in (6.a) are
contained in (6.b), all the terms in (6.b) are eamd in (6.c) and so on. Also, notice from (4)
that someAP terms are equal to zero. By making all thesetgubsns, the short-circuit potential

equations can finally be rewritten as:

M1M2: AR, +AP,, +AR,+AR,=0 (7.a)
NIN2: AP, + AP, + AP, + AP, =0 (7.b)
Al1A2: AP, +AP, + AR, + AP, =0 (7.c)
B1B2: AR, + AR + AP, + AR,  + AP,, + AR, =0 (7.d)

In the short-circuit current equations the fact thiarrents can freely circulate trough the short-
circuits is exploited. These equations are in fastent balance equations because for writing
them the Kirchoff's Law of Currents is applied t@acé node in the tool. Notice from figure 2 that

due to the short circuits, the 9 electrodes ofttdw are reduced to 5 actual nodes. Notice also
that, in addition to the currents supplied by tbheent sources, all currents injected and collected
by the tool into and from the formation must beluded in these equations. As it can be seen
from figure 1, while electrodes Al and A2 injece thucking current la and AO injects the survey
current lo, electrodes B1 and B2 collect lat+lo. the other hand, the potential monitoring

electrodes M1, M2, N1, N2 do not inject or collacly current. Then, by using these facts and
applying Kirchoff's Law of Currents to each of tBenodes in figure 2, the short-circuit current

equations are obtained:

AO: 1, -1, =1,=0 (8.a)
MIM2: |, +1, —1, 1 =0 (8.b)
NIN2: I, +1, 1,1, =0 (8.c)
ALA2: | +1 —1, =1, -1,=0 (8.d)
B1B2:1,+1_ +I,~1,=0 (8.e)

where equation (8.a) is actually a linear comboratf the others. To prove this, let us solve

(8.e) for lo+la and replace it into (8.d), thenv&o(8.d) for lo and replace it into (8.c) and so on



By doing that, it can be seen that (8.a) reducelsedrivial equality lo=10; so (8) can be rewriite

in terms of only four equations as follows:

l=1,=1,+1, (9.a)
=1, =1, (9.b)
I, =1, =1, (9.c)
I,=1, =1, (9.d)

Finally, in the control condition equations, thetrestions required for making the tool to operate
in its normal focused condition are imposed. Irs ttéise those restrictions are imposed just by
equating the potential between electrodes M1 andtdNXero. Alternatively, the potential
between M2 and N2 can be done zero.

MI1IN1: AR, + AR, =0 (20)

or, M2N2: AP, + AP, =0 (11)
Notice that either (9) or (10) must be used butbwth of them. In fact, by including both of
them no additional information is added to the afe¢quations; notice that the combination of
(10) and (11) leads to (7.b).

At this point we already have all the required d¢mues: 23 Method of Moment equations (the 5
electrode equations given in (4) and the 18 insulaguations given in (5)) and 9 System
equations (the 4 short-circuit potential equatigiven in (7), the 4 short-circuit current equations
given in (9) and the control condition equationegivby either (10) or (11)). That accounts for a

total of 32 linearly independent equations.

SIMPLIFICATION OF THE SET OF EQUATIONS

From the previous section, we obtained a set oe@2ations with 32 unknowns that can be

solved, but programming a set like that can beeguaiolving. For this reason let us first attempt



to simplify it a little more by using some algelorananipulations and let us see if it can be

written in a more compact form.

First of all, notice that (5) can be used to eliatthe unknown current source intensities in (9).

By doing so and rearranging some terms, (9) caeWwsdtten as follows:

ly=1, =1, —1, (12.a)
I, =11, (12.b)
le =1, =1, (12.c)
=1, -1, (12.d)

Next, (5) and (12) can be used to collect somegemthe potential difference expressions. For

example, by replacing (5) and (12) into (4.a) thieofving expression foAPR, is obtained:

AP, =1,AR, +I [ZAR +ZAR,)+I AR, +1 [ZAR +ZAR

i=19 i=16

+ Is[iARi + iARi) + |10[§ARi + iARJ +1, AR,

i=7 i=14 i=9 i=12
21
+130AR g+ 153 AR, — [z AR +ZAR IaZ:ARi (13)
i=12 i=19 i=19

In the same way, similar expressions for all ff#¢ (n =1, 2, ... 23) can be written. And, what is

much better, a general expression can be writtéollasvs:

4-n 22-n 18-n
AP, :IlARl_n+I2[ZARi + ZARJ +1 AR +I ( ZAR + ZAR

i=2-n i=20-n i=6-n i=17-n

16-n \ 11-n 14-n ‘\
+1 [ZAR + ZAR|)+|10[ ZAR + ZAR|)+I12AR12 n

i=8-n i=15-n i=10-n i=13-n
18-n 22-n 22-n
18R+ 1538R,  — ( ZAR + ZAR —la ZARi (14)
i=13-n i=20-n i=20-n

forn=1,2,3, ..., 23.

10



Notice that equation (14) provides an expressiornhe potential difference between the centers
of any two consecutive segments along the toolaserfAlso, as it can be seen form (14), the
total number of unknowns has been reduced to 18n,Ténly 10 linearly independent equations
are required now; and those are the 5 electrodatieqs, the 4 short-circuit potential equations
and the control condition equation. By recalling thct mentioned before that (7.b) was actually

a linear combination of (10) and (11), the setepfations can be rewritten as follows:

AP = AP, =AP, = AP, = AP,, =0 (15.a)
AR, + AP, =AP, + AP, =0 (15.b)
AR, +AP, +AP,+ AP, =0 (15.c)
AP, +AP, + AP, +AP, =0 (15.d)
AP, + AR, + AP, + AP, + AP, + AR, =0 (15.e)

where theAP’s are given by (14).

Finally, (15) can be written in matrix form as:

[AR]T=Db (16)

where[AR] is a 10x10 matrix which elements are given by doation of AR’s according to
(14) and (15).1 is the unknown column vectfr, I, I Ig Iy 1o 1y, 14g 1,5 1,] andb is a column

vector which elements are defined by the survegeotifo times a combination aR’s.

At this point, programming the set of equation e&rwsimple. The unknown vector can be
computed by directly inverting t{AR] matrix.

THE SYMMETRIC TOOL CASE

Additional simplifications can be performed to thet of equations by assuming that certain

symmetry conditions are held.

11



Although it is not always true in the practice, sotimes the laterolog system happens to be
symmetric about its central electrode AO (see &dl)x. That means that the lower side of the tool
is a mirror image of the upper side of the toolisTis going to be referred as the tool symmetry
condition. In addition to that, if the borehole af@mation parameters are assumed to be
constant in the vertical direction, which is goitg be referred as the formation symmetry

condition, then the symmetry can be exploited bggithe Bisection theorem.

When both the tool and the formation symmetry coons are met, the following assertions

happen to be true:

l,=-1,,_, forn=12..12 (17.a)
AP, =-AP,, forn=12,..12 (17.b)
I
It:—ly:Iu:—Ix:IV:—IW:EO (17.c)
l,+1
l,=-1,= 02 2 (17.d)

Although the equations in (17) specifically refesghe model tool presented in figure 2, similar
equations can be easily written for any symmeta tonfiguration. The basic idea is to make
currents and potential differences to be symmaeitigut the center of the tool. It is important to
notice that the symmetry conditions make the praser the short circuits in the LLs system to
be redundant; that is, that they can be removedowitaltering the currents and the potentials. In
fact, as it is going to see next, the use of (¥duces the short circuit potential equations to

trivial equalities.

By replacing (17) into (15) many of the equatioesdme trivial and the set is then reduced to

the following set of three linearly independent &ipns:

AR =0 (18.a)
AP.=0 (18.b)
AR, + AP, =0 (18.c)

where, after replacing (17) into (14), thE’s are given by:
12



AI:)n = I1(AR1—n _ARZB—n) + I5 (ARs—n - AR19—n)

+—[ZAR - ZZZnAR)+ [ZAR + 11ZnAR - 1inAR - ZiAR (19)

i=2-n i=20-n i=2-n i=6-n i=13-n i=20-n

forn=1, 2, 3, ..., 23.

Notice from (19) that the number of unknowns haiso ébeen reduced to three. Then, by

substituting (19) into (18) the set can be finallytten in matrix form as in (16), with:

|_ 1( 3 21 —|
| (AR, —AR,) (AR, - AR,,) E(ZAR > AR ) |
| Ij. i 19 |
1
[AR] =] (AR—4 - ARIB) (ARO - ARM) E(ZAR Z AR ) | (20.a)
i=-3 i=15
| -7 15 \\ 1 -4,-5 14;13 |
|(ZAR AR (ZAR ZARl -( > AR, - ZARJ|
I_i:—8 i=14 i i=10 ) 2 i=-6;-7 i=12;11 J
[ (s \
| (ZAR +ZAR ZAR ZARI |
| i=1 i= 12 i=19 ) |
_ -1 6
b:—h| (ZAR +> AR, ZAR ZARI\ | (20.b)
2 i=-3 i=1 i=15 )
| 10;9 14;13 |
[ ZAR + ZAR > AR, - ZARJ|
i=-6,-7 i=-2,-3 i=54 i=12;11 J
and, 1=, 1, 1] (20.c)
where the double indexed summations must be irgep@s follows:
ZAR ZAR +ZAR (21)

i=a;c

THE GENERAL SYMMETRIC TOOL CASE

The set of equations described by (18) and (1®rseb the particular case of the model tool
presented in figure 2. Nevertheless, by lookingeftdly to the currents and the limits of the
summations at every term in (19), it can be notited there exists a close relationship between

those parameters and the tool configuration. Allsoan be noticed that the equations in (18)
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only make reference to the potentials over thetldes and the control condition in one half of
the tool. By exploiting those facts, we will be alib write the equations for an arbitrary LLs

system which satisfies both of the symmetry coodgidescribed before.

Figure 3 presents the specifications of an arlyiteymmetric LLs system of N segments in
length. Notice that the short circuits have beenttedh in figure 3. That is because, as it was
mentioned before, when the symmetry conditionshesld, the short circuits do not alter the
system operation. Also, all the distances defimefigure 3 are indicated in numbers of segment

lengths. So, for example, the size of electrodesANAE-NAS) segments.

N1 M1 A0 I
(lo+la)/2 lo/2 lo/2 lo/2
S S

Center of the tool

Figure 3: General Symmetric Tool Case.

By using the notation presented in figure 3 anddhservations mentioned before, the set of

equations for the general symmetric tool case eanriten as follows:

AP, =0 for 1< k <NBE (22.a)
AR, =0 for NAS <k <NAE (22.b)
AP, =0 for NNS<k <NNE (22.¢)
AP, =0 for NMS <k <NME (22.d)
AP, =0 for NAO<k<N/2 (22.e)

14



NMS

ZAPi =0 (22.1)
i=NNE
where theAP’s are given by:

NBE-1

NAE -1 NNE-1
AI:)n = Z(ARi—n _ARN—i—n) Ii + Z(ARi—n _ARN—i—n) Ii + Z(ARi—n - ARN—i—n) Ii
i=1

i=NAS+1 i=NNS+1
NME-1 N/2-1 NAS NBE \
+ Z(ARi—n - ARN—i—n) Ii + Z(ARi—n _ARN—i—n) Ii +( ZARi—n - ZARN—| n) -
i=NMS+1 i=NAO+1 i=NBE i=NAS 2
NAS NNS NMS NAO
(ZARi_n+ D AR_,+ D AR+ ZAR 1l
i=NBE i=NAE i=NNE i=NME 2
NME NNE NAE NBE
( ZARN i-n + ZARN i-n + ZARN i-n + ZARN |—n _O (23)
i=NAO i=NMS i=NNS i=NAS 2

forn=1,2,3, ..., N-1.

It can be easily seen from (22) and (23) that tmalrer of equations is equal to the number of
unknowns. Then, by replacing (23) into (22) theeyscan be rewritten in matrix form an solved

by a direct matrix inversion.

CONCLUSIONS

In the present report, the basic methodology fodeliag a laterolog system has been discussed.
Although the particular case of the LLs system waslied, the results obtained here can be
easily extrapolated for the analysis of other tgpéaterolog systems. In fact, the five types of

equations described here are applicable to anyg ofdsterolog tool.

As it could be seen, by exploiting the symmetrypamties of both the tool and the formation, the
linear algebra problem can be greatly simplified.general, the number of equations will be
reduced to N/2-2; where N is the original numbeegbations without taking advantage of the
symmetry conditions. Although the symmetry condisaot always happen in the practice, the

use of symmetry when it is possible will notablguee the time of computation.
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