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INTRODUCTION

This report describes how to solve the direct wersf the time harmonic field electric logging

problem for a generic logging device. As it is ddsed in [1], the electromagnetic equations are
solved only for the basic current element and @it is then used to represent the logging
device as a linear combination of a large numbeuafent elements. For this reason, most of the

attention in this report will be directed to thedar algebra problem.

A GENERIC LOGGING TOOL EXAMPLE

Although the procedure that will be presented hegroperly suited for solving almost any tool
configuration; it is for practical reasons and mder to make the definitions more understandable
that the methodology will be illustrated by usingepresentative logging tool as an example.

This representative tool is depicted in figure 1.
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Figure 1: Generic tool example to be used for titats/e purposes.

The left side of figure 1 shows the electronicshef generic tool to be considered, while the right
side illustrates the resulting current distributiona homogeneous formation. As it can be seen
from figure 1, the generic tool to be consideredamposed by one current return electrode B
and three current injector electrodes: the sunlestde AO, which injects the survey current lo
into the formation; and the auxiliary or bucking@flodes Al and A2, which are short-circuited
to each other and inject the bucking current lae Fensity of the bucking current is adjusted
by a control system so that certain potential cioonliVc is achieved between the survey and the
bucking electrodes. All the injected current laidaecollected by the current return electrode at

the top of the tool after circulating throughout #arthen formation.
Although the particular configuration of a loggitapl such as the one shown in figure 1 may not

occur to be a real logging device, it was seletbe@xplanatory purposes because, in addition to

its relative simplicity, it includes all the elenismpresent in the more complex logging systems.

TOOL MODEL AND SYSTEM UNKNOWNS



As it was mentioned before, the logging tool is eled by considering the linear combination of
a large amount of basic current elements. Thisquoe is known as the method of moments

[2]. Figure 2 presents the appropriate model ferttol described in figure 1.
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Figure 2: Model of the generic tool to be considere

As it can be seen from figure 2, the size of thal te 16 segment lengths. The basic current
element, described in [1], has a total length af s&gment lengths. So, only 15 current elements
are required for representing the logging tool. Séhourrent elements are going to be enumerated
as 1 to 15 from left to right and their currenesgths, which are unknowns to be solved for, will

be denoted as to I15 respectively.

It can be noticed also that the intensity of theree representing the bucking current la depends
on the potential condition ddefined between the electrodes Al and AO. Sobtioking current
la will be other unknown in the system of equatio®s the other hand, the intensity of the

survey current lo must be known and different tharo.

Finally, it can be seen the presence of a curmamice R, which represents the current returning
to the tool through the return electrode B. Thigrent will also constitute an unknown. At this

point, it can seem useless to consider the retumrest as an unknown since, as it can be seen



from figure 2, it is just the addition of the buegiand the survey current; however, as it will be
seen later, this consideration helps to write tiigtesn of equations in a more simple and

standardized way.

Then, summarizing, the system represented in figuras a total of 17 unknowns, which are: the
15 element current strengths, the bucking currandid the return currengk.l Therefore, 17
independent equations are required. As it will ensnext, two different kind of equations are

involved, the method of moment equations and tlseesy equations.

METHOD OF MOMENT EQUATIONS

The method of moment equations are those relatétetéact that the tool is being modeled as a
linear combination of current elements. As eachienurelement is responsible for one equation,
the total number of method of moment equations véliequal to the number of current elements
in the model. Two different types of method of motnequations can be distinguished, electrode
equations and insulator equations; and, as it pdi@d by their connotations, the type of equation
related to an specific current element will depeamd whether that element is located in an

electrode or in an insulated region.

In the electrode equations, the potential diffeesnicsetween the centers of consecutive segments
are equated to zero. That is because electrodesugmgosed to be made out of perfect
conductors. The number of equations in each elgetvall depend on the size of the electrode.
For an electrode of n segment lengths, there wilhil independent equations. So, a total of five
electrode equations can be written for the tooleggnted in figure 2; one of which would be:

AP, =1, AR, +1,AR, +1,AR, + ...+, AR, =0 (1)
where AP, is the potential difference between the centersegiments 1 and 2, the I's are the
curr-ent strengths of the current elements and\Ris are the quantities, defined by (49) in [2],

that represent the response of the basic curremtegit.



What equation (1) simply states is that the potéwlifference between the centers of segments 1
and 2 is equal to zero, which is true since thegepoints are over the same electrode, see figure
2. Notice also from (1) that each term in the summwnarepresents the contribution of each

particular current element to the whole potential.

In general, the termh AR, will be the contribution of the nth current elerhém the potential
defined in a segment located at a distance of kneaglengths from it. In this way, the potential

difference between the centers of segments n ahdar be defined as follows:
AP, =D AR, @)
whereAR_, = AR, [2], and N is the total number of segments intto¢ model. For the example

in figure 2, N=16.

Then, the five electrode equations for the toosented in figure 2 are:

B: AR =0 (3.2)
B: AR,=0 (3.b)
Al: AP, =0 (3.c)
AO: AR, =0 (3.d)
A2: AR, =0 (3.e)

In the insulator equations, the current strengththe current elements in the same insulated
region are equated to each other. That is becdwesdobl surface in between electrodes is
supposed to be made out of a perfect insulatonoscadial current flow exists. In fact, in the

insulated regions, all current circulates alongtthed’s axial direction. The number of equations
in each insulated region depends on the size ofefjien. For an insulated region of n segment
lengths, there will be n+1 independent equatiorts. the example under consideration, the
following 7 insulator equations can be written:

B_AL: I,=1,=1,=1; (4.9)
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Al _AO: I =1,=1, (4.b)
AO_A2: I, =1,=1, (4.c)

At this point, we have 12 equations out of the negli17.

SYSTEM EQUATIONS

The system equations are those related to thefgpsgstem configuration and its operating
conditions. Again, two different types of systemuatpns are to be considered, they are the

potential condition equations and the nodal curegpiations.

In the potential condition equations, any potemntastriction imposed to the tool is considered.
Basically, two different kind of situations can det such a restriction. The first is the case of
short-circuited electrodes. In this case, the pakdifference between two electrodes is forced
to be zero because of the existence of the shraditi This particular type of equations is going
to be referred later as short-circuit potential atgpns. The logging tool under consideration

exemplifies this situation with its bucking eledes Al and A2; the resulting equation follows:

2. 0R=0 ®)

The second situation arises when a bucking cuiigenbnstrained by the occurrence of some
defined potential condition between two independelectrodes in the tool (here, the term
‘independent’ makes reference to two electrodetsateano short-circuited to each other). Again,
the tool presented in figure 2 exemplifies thiuaiton with the definition of the potential

condition \& between the bucking and the survey electrodegethéting equation follows:
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i=8



As it will be seen later, any additional buckingreturn current defined in the logging system
will require an associated potential condition irdey to maintain the system of equations

solvable.

Finally, in the nodal current equations, a balaofceurrents in each of the independent nodes of
the tool is done. Notice that the number of indejes nodes in a logging tool depends on how
many electrodes are short-circuited and is alwaysleto the total number of electrodes minus
the total number of non-redundant short-circuitshle case of the tool under consideration, there

are only three independent nodes. Their threeadladjuations are:

B: I,—-1,=0 (7.1)
AL_A2: =l +1—1,+1,=0 (7.2)
AO: -1, +1,+1,=0 (7.3)

where those currents entering the nodes have le®idered as negative, and those exiting the

node as positive.

At this point the total 17 independent equationgehlbeen completed; five electrode equations
(3), seven insulator equations (4), one short-tifotential equation (5), one potential condition

equation (6) and three nodal current equations (7).

SIMPLIFICATION OF THE SET OF EQUATIONS

From the previous section, a set of 17 equatiotis Wi unknowns was obtained for the logging
system presented in figure 1. Although such a systan be computationally solved, a big
simplification can still be made to it. The aim sdich simplification is to use the insulator
equations, given in (4), to reduce the number &howns. In fact, as the current strengths of all
current elements in the same insulated region gualethe number of actual unknown currents

in the insulators can be reduced to the numbersefiated regions in the logging device.



By replacing (4) into (2) the following expressi@sults:

6
AP, =1,AR, , +1,AR,  +1,> AR _, +I,0R,

i=3

10 14
+|SZARi-n +1,0R,, +|122ARi—n +150R 5, (8)
i=8

i=12
which, after the respective substitutions, redefieguations (3), (5) and (6) in terms of the eight

current strengths,, 1,,1,,1,,15,1,,, 1, andl ;.

Also, by replacing (4) into (7), the nodal currequations are reduced to:

l,—-1,=0 (9.a)
“l+lg =l +1,=0 (9.b)
—lg+l,+1,=0 (9.0

notice that the summation of the equations in €8yl to the equatiol, = I, + I,; which, as it

was mentioned before, can be easily deduced frgaordi2. Now, it is made more evident the
fact that the inclusion of this information wouldake the equations in (9) linearly dependent and
would require the subsequent elimination of thedindependence. So, the inclusion of the return

current R as an unknown allows the use of the entire sebdél current equations (9).

Then, the original system of 17 equations with hiknowns has been reduced to a system of 10
equations, given by (3), (5), (6) and (9); and I&knowns, given by the 5 current strengths

related to those current elements located in teetreldes I, 1,,1,,1,; and I;), the 3 current

strengths associated to the insulated regibns,(andl,,), the bucking current la and the return

current R.

MATRIX REPRESENTATION OF THE SYSTEM OF EQUATIONS

By introducing the following notation:



Ny 1o

R => > AR, (10.a)

it is possible to rewrite (8) in a more compactias follows:

AP =R T, (10.b)

where the vector®  and]_ are given by:

R'=[Ry RS Rl R R’ R R R (10.b.1)

and 15=[1, 1, 1, 1y lg 1, Iy 1] (10.b.2)

Then, it is also possible to rewrite the reducesiesy of equations as:

R’ Tcs :§2T Tcs = ﬁ; -Ics :rlechs = rzl-I-S-Ics: 0 (11&)
14 \T _

( Ri) =0 (11.b)
i=8
10 \T _

( Ri) [ =V, (11.c)
i=8

l,-1,=0 (11.d)

—l,+1g-1,+1,=0 (11.e)
lg+1,=-1, (11.9)

Notice that from (11), an immediate matrix repréagan of the system of equations easily
follows, and it is given by:
[R] T=b (12.a)

where the matri{ Ris the coefficient matrix of the system of equasiogiven by:



(R RZ R RE RS R¥ REO RERH

0
| RR RS R R' Ry R R RP™ O 0|
I RR RZ R R R R R RIP™ O OI
R RLORLOREORD RY RES OREM 0 0
(R Ry RL RI R R¥ R RE¥ 0 0 (12)
|Ré,14 R5,14 Rg,u Ré,lu R%;M Rglle4 Rg:ig Réi‘i“ 0 0 |’ .
|R%3,1o R0 Riwo Reio Raw Rite R Reio' O 0|
| O 0 0 0 0 1 0 0 0 -1
lo o o o0 O -1 1 -1 1 O
lo o o o o o -1 1 0 0]
the vectorl constitutes and extended version of the vettogiven in (10.b.2),
1T=[in] 1. 1) (12.c)
and the vectob contains the independent parameters
b'=[0 00 0 0 0V O 0 -l (12.d)

Solution to the linear algebra problem is then e by direct inversion of the matfiR] and
the computation of the unknown current vector Finally, with all currents known, all the
potential differences along the tool surface candraputed by means of (10).

GENERALIZATION OF THE METHOD

In the previous sections, the complete system aaggns for the particular tool configuration

presented in figure 1 has been determined. Howéwvégs been done is a such standardized

manner that the subsequent generalization to atraagbtool configuration will follow in a very

natural way.

Firs of all, let us define some important tool paeters, which are presented in Table 1.

Table 1: Important tool parameter definitions.
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Paramete Definition

NE Total number of electrodes.
Nshc Number of non-redudant short-circuits.

Nn Number of actual nodes.

N#s First segment in electrode #.

N#e Last segment in electrode #.

Npc Number of potential conditions.

Nce Total number of current elements at electrodgs.
NCci Total number of current elements at insulatorg.
Nui Total number of unknown nodal currents.

Some important relationships between the paramdédised in Table 1 follow:

Nn = NE - Nshc (13.1)
NE

Nce=>_(Nke- Nks) (13.2)
k=1
NE-1

Nci = > (N(k+1)s— Nke) (13.3)
k=1

N =Nce + Nci + 1 (13.4)

where N is the total number of segments in the noadlel.

The total number of unknowns and equations fovargtool configuration can also be expressed

in terms of the parameters in Table 1.

The total number of unknowns, as it was seen imipus sections, is given by the total amount
of three different types of currents; they are, tiierent strengths associated to those current
elements located at the electrodes (Nce), the musteengths of the elements at the insulators
(which are reduced to (NE-1) unknowns by meansefinsulator equations), and the unknown
nodal currents (Nui) which include all bucking aeturn currents. Then, it can be written that:
Nunknowns = Nce + (NE-1) + Nui (24)

On the other hand, the total number of equatioret ttan be written for a given tool

configuration is given by the electrode equatioNed), the short-circuit potential equations
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(Nshc), the potential condition equations (Npc) #mel nodal current equations (Nn). Then, it
follows that:

Nequations = Nce + Nshc + Npc + Nn (15.a)

or, by using (13.1),

Nequations = Nce + Npc + NE (15.b)

Notice from (14) and (15.b), that a necessary d¢ardfor the system to be solvable is that there
must be one less potential condition than unknoatahcurrents. That is, in the case of tools
with only one return current, that the number aigptial conditions must be equal to the number
of bucking currents. Notice also that, dependingruiie tool configuration, the short-circuit and

the potential condition equations may not be remljiovhich is not the case for the electrode and

the nodal current equations that must always bsepie

Once the agreement between the number of equatmls unknowns in a given tool

configuration is checked, its related set of equegtican be written as follows:

A.- ELECTRODE EQUATIONS:
AP =0 [ i0[Nks, Nke-1] for k=1,2..NE (16.a)

B.- SHORT-CIRCUIT POTENTIAL EQUATIONS:

Nhe-1
AP =0 0O{kh Ok<hOEk« Eh (16.b)

i=Nke

whereEk - Eh means that there is a short-circuit between aldefs k and h.

C.- POTENTIAL CONDITION EQUATIONS:

Nhs=1
Y AP =V, O {kh} Ok<h O PC(Nk Nh)=V,, (16.c)

i=Nke

where PC(Nk, Nh) =V,, means that the potential conditidf), has been defined between nodes
k and h.
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D.- NODAL CURRENT EQUATIONS:
Z I exiting node kK~ ZI entering node k: Z Ientering nodek ZI exiting node k for k = :L 2 'Nn (16d)

unknown unknown known known
currents currents currents currents

Where the potential differenceSP’s are computed by using the following generalimatof
(20):

NE (" Nke-1 \ NE-1 N(k+1)s -1 \
API = Z[ Z Im ARm—i) + INke ZARm—i) (166)
k=1 “m=Nks k=1 m=Nke

Again, the matrix representation given in (12.a) ba applied to (16). A detailed illustration of

the matrix and vector distributions and sizes @/pted in figure 3.
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Figure 3: Composition of the matrix equation fagemeric logging tool.

The use of the modeling procedure discussed heremly allows to model generic logging
tools, but also to model different configuratiorfstiee same instrument. This is particularly
useful in the computation of circuit analogs fogdong devices in a given formation [3]. This

topic is briefly discussed in the following section
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CIRCUIT ANALOG COMPUTATION

As it is going to be seen next, it is possibledpresent a logging device operating in a given
earthen formation by means of an analogous cirguiivhich the formation is simulated by an
impedance network whose nodes represents the &etodes. In such a representation, the set
of impedances is totally determined by the geomatiy conductivity distribution of the earthen
formation, the physical arrangement of the toollsceodes and the tool's frequency of

operation. Notice, however, that it is independs#rihe tool’s electronics.

In order to compute the impedance values for angiseenario (physical arrangement of
electrodes, earthen formation and frequency ofaijmer), the linear algebra problem has to be
solved for a sequence of different tool configurnasi. In each of those configurations, the mutual
impedances between one of the nodes and all athermeasured. For simplicity, the impedance
between nodes k and m is going to be referred ksn¥( Figure 4 illustrates the configuration

that allows the computation of the impedances Z@n@ Z(1,3) for the example tool of figure 1.

Figure 4: Configuration for measuring Z(1,2) and 3.

As it can be seen from figure 4, the four-electtbd®ol under consideration has three actual

nodes. Node 1 is composed by the electrode B, Bdueelectrodes A1l and A2, and node 3 by
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AO. Notice that in the particular configuration d#pd in figure 1, node 1 injects the survey
current lo which is recollected as two separatéarmecurrents by nodes 2 and 3. Additionally, a

zero potential condition has been imposed betweelater.

The situation presented in figure 4 is equivalenthiat presented in figure 5, where the circuit

analog is shown.

que 1 X
Z(1,3) Z(1,2) Vi
O} Z(2,3) Node 2 ]

Figure 5: Circuit analog configuration for measgrif(1,2) and Z(1,3).

From figure 5, it follows that :

Z(1,2)= v (17.a)

IRZ

M

andZ(1,3)=- I (17.b)

R3

where, according to figure 4, can be computed (after solving the linear alggboblem) as:

v, =26:Api (17.c)

i=3

In a similar way, two additional configurations ¢compute Z(2,3) and Z(2,1), and Z(3,1) and

Z(3,2) can be realized; and it can be verified,tlatit is expected to be, Z(k,m) = Z(m,k) is
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always satisfied. Notice then, that in fact onlytdifferent configurations are required to fully

determine the set of impedances in the circuitanaf the tool under consideration.
In general, for an arbitrary tool with Nn nodes tmpedance values for its circuit analog can be
computed by solving the linear algebra problemafaotal of Nn-1 different configurations, say

i=1,2...Nn-1. The procedure related to the ith @pmktion is described next.

PARAMETER DEFINITION FOR THE ith CONFIGURATION

A.- The original tool’'s arrangement of electrodad &sulators is preserved.
B.- The original tool’s short-circuits are maintath
C.- All nodal currents are redefined as follows:
Node i: Injects survey current lo.
All other nodes: Collect return currents, beirg the return current at node k.
(k#)
D.- The original potential conditions are ignoretdlaNn-2 new zero potential conditions are

imposed such that all nodes, except node i, acedoto be at the same potential.

IMPEDANCE COMPUTATION IN THE ith CONFIGURATION

A.- Once the linear algebra problem is solved aliccarrents are known, the potentidt

(between the node i and any one of the otherg)ngpated.

B.- The values of Z(i,k) for k= i+1, i+2 ... Nare computed as/-/ IRk

CONCLUSIONS

In the present report, the methodology for solvihg linear algebra problem for a generic
logging device was developed. A detailed discussioout the different kind of equations that
must be considered and its associated matrix reprason was presented. Finally, the analog

circuit representation of a logging system wasflyrigiscussed.
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