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INTRODUCTION 

 

This report describes how to solve the direct version of the time harmonic field electric logging 

problem for a generic logging device. As it is described in [1], the electromagnetic equations are 

solved only for the basic current element and the result is then used to represent the logging 

device as a linear combination of a large number of current elements. For this reason, most of the 

attention in this report will be directed to the linear algebra problem. 

 

 

A GENERIC LOGGING TOOL EXAMPLE 

 

Although the procedure that will be presented here is properly suited for solving almost any tool 

configuration; it is for practical reasons and in order to make the definitions more understandable 

that the methodology will be illustrated by using a representative logging tool as an example. 

This representative tool is depicted in figure 1. 
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Figure 1: Generic tool example to be used for illustrative purposes. 

 

The left side of figure 1 shows the electronics of the generic tool to be considered, while the right 

side illustrates the resulting current distribution in a homogeneous formation. As it can be seen 

from figure 1, the generic tool to be considered is composed by one current return electrode B 

and three current injector electrodes: the survey electrode A0, which injects the survey current Io 

into the formation; and the auxiliary or bucking electrodes A1 and A2, which are short-circuited 

to each other and inject the bucking current Ia. The intensity  of the bucking current is adjusted 

by a control system so that certain potential condition Vc is achieved between the survey and the 

bucking electrodes. All the injected current Ia+Io is recollected by the current return electrode at 

the top of the tool after circulating throughout the earthen formation.  

 

Although the particular configuration of a logging tool such as the one shown in figure 1 may not 

occur to be a real logging device, it was selected for explanatory purposes because, in addition to 

its relative simplicity, it includes all the elements present in the more complex logging systems. 

 

 

TOOL MODEL AND SYSTEM UNKNOWNS 
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As it was mentioned before, the logging tool is modeled by considering the linear combination of 

a large amount of basic current elements. This procedure is known as the method of moments 

[2]. Figure 2 presents the appropriate model for the tool described in figure 1. 

 

A1 A0 A2B
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+   Vc    -

Ia (Vc) IoIR

 

Figure 2: Model of the generic tool to be considered. 

 

As it can be seen from figure 2, the size of the tool is 16 segment lengths. The basic current 

element, described in [1], has a total length of two segment lengths. So, only 15 current elements 

are required for representing the logging tool. Those current elements are going to be enumerated 

as 1 to 15 from left to right and their current strengths, which are unknowns to be solved for, will 

be denoted as I1 to I15 respectively. 

 

It can be noticed also that the intensity of the source representing the bucking current Ia depends 

on the potential condition Vc defined between the electrodes A1 and A0. So, the bucking current 

Ia will be other unknown in the system of equations. On the other hand, the intensity of the 

survey current Io must be known and different than zero. 

 

Finally, it can be seen the presence of a current source IR, which represents the current returning 

to the tool through the return electrode B. This current will also constitute an unknown. At this 

point, it can seem useless to consider the return current as an unknown since, as it can be seen 
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from figure 2, it is just the addition of the bucking and the survey current; however, as it will be 

seen later, this consideration helps to write the system of equations in a more simple and 

standardized way.  

 

Then, summarizing, the system represented in figure 2 has a total of 17 unknowns, which are: the 

15 element current strengths, the bucking current Ia and the return current IR. Therefore, 17 

independent equations are required. As it will be seen next, two different kind of equations are 

involved, the method of moment equations and the system equations. 

 

 

METHOD OF MOMENT EQUATIONS 

 

The method of moment equations are those related to the fact that the tool is being modeled as a 

linear combination of current elements. As each current element is responsible for one equation, 

the total number of method of moment equations will be equal to the number of current elements 

in the model. Two different types of method of moment equations can be distinguished, electrode 

equations and insulator equations; and, as it is implied by their connotations, the type of equation 

related to an specific current element will depend on whether that element is located in an 

electrode or in an insulated region. 

 

In the electrode equations, the potential differences between the centers of consecutive segments 

are equated to zero. That is because electrodes are supposed to be made out of perfect 

conductors. The number of equations in each electrode will depend on the size of the electrode. 

For an electrode of n segment lengths, there will be n-1 independent equations. So, a total of five 

electrode equations can be written for the tool represented in figure 2; one of which would be: 

∆P1 = I1 ∆R0 + I 2 ∆R1 + I 3 ∆R2 + ...+ I15∆R14 = 0 (1) 

where ∆P1 is the potential difference between the centers of segments 1 and 2, the I’s are the 

curr-ent strengths of the current elements and the ∆R’s are the quantities, defined by (49) in [2], 

that represent the response of the basic current element. 
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What equation (1) simply states is that the potential difference between the centers of segments 1 

and 2 is equal to zero, which is true since those two points are over the same electrode, see figure 

2. Notice also from (1) that each term in the summation represents the contribution of each 

particular current element to the whole potential.  

 

In general, the term I n ∆Rk  will be the contribution of the nth current element to the potential 

defined in a segment located at a distance of k segment lengths from it. In this way, the potential 

difference between the centers of segments n and n+1 can be defined as follows: 

∆Pn = ∆Ri −n I i
i =1

N −1

∑  (2) 

where ∆R−n = ∆Rn  [2], and N is the total number of segments in the tool model. For the example 

in figure 2, N=16. 

 

Then, the five electrode equations for the tool presented in figure 2 are: 

B:  ∆P1 = 0 (3.a) 

B:  ∆P2 = 0 (3.b) 

A1:  ∆P7 = 0 (3.c) 

A0:  ∆P11 = 0 (3.d) 

A2:  ∆P15 = 0 (3.e) 

 

In the insulator equations, the current strengths of the current elements in the same insulated 

region are equated to each other. That is because the tool surface in between electrodes is 

supposed to be made out of a perfect insulator, so no radial current flow exists. In fact, in the 

insulated regions, all current circulates along the tool’s axial direction. The number of equations 

in each insulated region depends on the size of the region. For an insulated region of n segment 

lengths, there will be n+1 independent equations. For the example under consideration, the 

following 7 insulator equations can be written: 

B_A1:  I 3 = I 4 = I 5 = I6  (4.a) 
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A1_A0:  I 8 = I 9 = I10  (4.b) 

A0_A2:  I12 = I13 = I14  (4.c) 

 

At this point, we have 12 equations out of the required 17. 

 

 

SYSTEM EQUATIONS 

 

The system equations are those related to the specific system configuration and its operating 

conditions. Again, two different types of system equations are to be considered, they are the 

potential condition equations and the nodal current equations.  

 

In the potential condition equations, any potential restriction imposed to the tool is considered. 

Basically, two different kind of situations can lead to such a restriction. The first is the case of 

short-circuited electrodes. In this case, the potential difference between two electrodes is forced 

to be zero because of the existence of the short-circuit. This particular type of equations is going 

to be referred later as short-circuit potential equations. The logging tool under consideration 

exemplifies this situation with its bucking electrodes A1 and A2; the resulting equation follows: 

∆Pi
i = 8

14

∑ = 0 (5) 

 

The second situation arises when a bucking current is constrained by the occurrence of some 

defined potential condition between two independent electrodes in the tool (here, the term 

‘independent’ makes reference to two electrodes that are no short-circuited to each other). Again, 

the tool presented in figure 2 exemplifies this situation with the definition of the potential 

condition Vc between the bucking and the survey electrodes; the resulting equation follows: 

∆Pi
i = 8

10

∑ = Vc (6) 
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As it will be seen later, any additional bucking or return current defined in the logging system 

will require an associated potential condition in order to maintain the system of equations 

solvable. 

 

Finally, in the nodal current equations, a balance of currents in each of the independent nodes of 

the tool is done. Notice that the number of independent nodes in a logging tool depends on how 

many electrodes are short-circuited and is always equal to the total number of electrodes minus 

the total number of non-redundant short-circuits. In the case of the tool under consideration, there 

are only three independent nodes. Their three related equations are: 

B:  I 3 − I R = 0  (7.1) 

A1_A2:  − I6 + I8 − I14 + I a = 0 (7.2) 

A0:  − I10 + I12 + I0 = 0 (7.3) 

where those currents entering the nodes have been considered as negative, and those exiting the 

node as positive. 

 

At this point the total 17 independent equations have been completed; five electrode equations 

(3), seven insulator equations (4), one short-circuit potential equation (5), one potential condition 

equation (6) and three nodal current equations (7). 

 

 

SIMPLIFICATION OF THE SET OF EQUATIONS 

 

From the previous section, a set of 17 equations with 17 unknowns was obtained for the logging 

system presented in figure 1. Although such a system can be computationally solved, a big 

simplification can still be made to it. The aim of such simplification is to use the insulator 

equations, given in (4), to reduce the number of unknowns. In fact, as the current strengths of all 

current elements in the same insulated region are equal, the number of actual unknown currents 

in the insulators can be reduced to the number of insulated regions in the logging device. 

 



 8 

By replacing (4) into (2) the following expression results: 

∆Pn = I1 ∆R1− n + I 2 ∆R2− n + I3 ∆Ri − n
i =3

6

∑ + I 7 ∆R7− n  

+ I8 ∆Ri − n
i =8

10

∑ + I11 ∆R11− n + I 12 ∆Ri − n
i =12

14

∑ + I15 ∆R15−n  (8) 

which, after the respective substitutions, redefines equations (3), (5) and (6) in terms of the eight 

current strengths I1, I2 ,I3 ,I7 ,I8 ,I11, I12 and I15 . 

 

Also, by replacing (4) into (7), the nodal current equations are reduced to: 

I 3 − I R = 0 (9.a) 

− I3 + I 8 − I12 + Ia = 0  (9.b) 

− I8 + I12 + I 0 = 0 (9.c) 

notice that the summation of the equations in (9) leads to the equation I R = Ia + I0 ; which, as it 

was mentioned before, can be easily deduced from figure 2. Now, it is made more evident the 

fact that the inclusion of this information would make the equations in (9) linearly dependent and 

would require the subsequent elimination of the linear dependence. So, the inclusion of the return 

current IR as an unknown allows the use of the entire set of nodal current equations (9). 

 

Then, the original system of 17 equations with 17 unknowns has been reduced to a system of 10 

equations, given by (3), (5), (6) and (9); and 10 unknowns, given by the 5 current strengths 

related to those current elements located in the electrodes (I1, I2 ,I7 ,I11 and I15), the 3 current 

strengths associated to the insulated regions (I 3,I 8  and I12), the bucking current Ia and the return 

current IR.  

 

 

MATRIX REPRESENTATION OF THE SYSTEM OF EQUATIONS 

 

By introducing the following notation: 
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Rna ,n b

i a, i b = ∆Ri −n
i a

i b

∑
na

nb

∑  (10.a) 

it is possible to rewrite (8) in a more compact form as follows: 

∆Pn = R n
T I cs  (10.b) 

where the vectors R n  and I cs are given by: 

R n
T = Rn

1 Rn
2 Rn

7 Rn
11 Rn

15 Rn
3,6 Rn

8,10 Rn
12,14[ ] (10.b.1) 

and   I cs
T = I1 I 2 I 7 I11 I15 I 3 I 8 I12[ ] (10.b.2) 

 

Then, it is also possible to rewrite the reduced system of equations as: 

 

R 1
T I cs = R 2

T I cs = R 7
T I cs = R 11

T I cs = R 15
T I cs = 0  (11.a) 

R i
i =8

14

∑
 
 
  

 

T

I cs = 0 (11.b) 

R i
i =8

10

∑
 
 
  

 

T

I cs = Vc  (11.c) 

I 3 − I R = 0  (11.d) 

− I3 + I 8 − I12 + Ia = 0 (11.e) 

− I8 + I12 = −I 0  (11.f) 

 

Notice that from (11), an immediate matrix representation of the system of equations easily 

follows, and it is given by:  

R[ ] I = b  (12.a) 

where the matrix R[ ] is the coefficient matrix of the system of equations, given by: 
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R1
1 R1

2 R1
7 R1

11 R1
15 R1

3,6 R1
8,10 R1

12,14 0 0

R2
1 R2

2 R2
7 R2

11 R2
15 R2

3,6 R2
8,10 R2

12,14 0 0

R7
1 R7

2 R7
7 R7

11 R7
15 R7

3,6 R7
8,10 R7

12,14 0 0

R11
1 R11

2 R11
7 R11

11 R11
15 R11

3,6 R11
8,10 R11

12,14 0 0

R15
1 R15

2 R15
7 R15

11 R15
15 R15

3,6 R15
8,10 R15

12,14 0 0

R8,14
1 R8,14

2 R8,14
7 R8,14

11 R8,14
15 R8,14

3,6 R8,14
8,10 R8,14

12,14 0 0

R8,10
1 R8,10

2 R8,10
7 R8,10

11 R8,10
15 R8,10

3,6 R8,10
8,10 R8,10

12,14 0 0

0 0 0 0 0 1 0 0 0 −1

0 0 0 0 0 −1 1 −1 1 0

0 0 0 0 0 0 −1 1 0 0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

; (12.b) 

the vector I  constitutes and extended version of the vector I cs, given in (10.b.2), 

 I T = I cs
T Ia I R[ ]; (12.c) 

and the vector b  contains the independent parameters 

b T = 0 0 0 0 0 0 Vc 0 0 − I0[ ]. (12.d) 

 

Solution to the linear algebra problem is then achieved by direct inversion of the matrix R[ ] and 

the computation of the unknown current vector I . Finally, with all currents known, all the 

potential differences along the tool surface can be computed by means of (10). 

 

 

GENERALIZATION OF THE METHOD 

 

In the previous sections, the complete system of equations for the particular tool configuration 

presented in figure 1 has been determined. However, it has been done is a such standardized 

manner that the subsequent generalization to an arbitrary tool configuration will follow in a very 

natural way. 

 

Firs of all, let us define some important tool parameters, which are presented in Table 1. 

 

Table 1: Important tool parameter definitions. 
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Parameter Definition
NE Total number of electrodes.

Nshc Number of non-redudant short-circuits.
Nn Number of actual nodes.
N#s First segment in electrode #.
N#e Last segment in electrode #.
Npc Number of potential conditions.
Nce Total number of current elements at electrodes.
Nci Total number of current elements at insulators.
Nui Total number of unknown nodal currents.  

 

Some important relationships between the parameters defined in Table 1 follow: 

Nn = NE - Nshc (13.1) 

Nce = (Nke− Nks)
k =1

NE

∑  (13.2) 

Nci = (N(k + 1)s− Nke)
k=1

NE−1

∑  (13.3) 

N = Nce + Nci + 1 (13.4) 

where N is the total number of segments in the tool model. 

 

The total number of unknowns and equations for a given tool configuration can also be expressed 

in terms of the parameters in Table 1. 

 

The total number of unknowns, as it was seen in previous sections, is given by the total amount 

of three different types of currents; they are, the current strengths associated to those current 

elements located at the electrodes (Nce), the current strengths of the elements at the insulators 

(which are reduced to (NE-1) unknowns by means of the insulator equations), and the unknown 

nodal currents (Nui) which include all bucking and return currents. Then, it can be written that: 

Nunknowns = Nce + (NE-1) + Nui (14) 

 

On the other hand, the total number of equations that can be written for a given tool 

configuration is given by the electrode equations (Nce), the short-circuit potential equations 
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(Nshc), the potential condition equations (Npc) and the nodal current equations (Nn). Then, it 

follows that: 

Nequations = Nce + Nshc + Npc + Nn  (15.a) 

or, by using (13.1), 

Nequations = Nce + Npc + NE  (15.b) 

 

Notice from (14) and (15.b), that a necessary condition for the system to be solvable is that there 

must be one less potential condition than unknown nodal currents. That is, in the case of tools 

with only one return current, that the number of potential conditions must be equal to the number 

of bucking currents. Notice also that, depending upon the tool configuration, the short-circuit and 

the potential condition equations may not be required; which is not the case for the electrode and 

the nodal current equations that must always be present. 

 

Once the agreement between the number of equations and unknowns in a given tool 

configuration is checked, its related set of equations can be written as follows: 

 

A.- ELECTRODE EQUATIONS: 

∆Pi = 0 ∀ i ∈ Nks, Nke−1[ ] for k = 1,2...NE (16.a) 

 

B.- SHORT-CIRCUIT POTENTIAL EQUATIONS: 

∆Pi
i = Nke

Nhs−1

∑ = 0 ∀ k, h{ } ∋ k < h ∧ Ek ↔ Eh  (16.b) 

where Ek ↔ Eh means that there is a short-circuit between electrodes k and h. 

 

C.- POTENTIAL CONDITION EQUATIONS: 

∆Pi
i = Nke

Nhs−1

∑ = Vkh ∀ k, h{ } ∋ k < h ∧ PC(Nk, Nh)= Vkh  (16.c) 

where PC(Nk, Nh) = Vkh  means that the potential condition Vkh  has been defined between nodes 

k and h. 
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D.- NODAL CURRENT EQUATIONS: 

I exiting node k
unknown
currents

∑ − I entering node k
unknown
currents

∑ = Ientering node k
known
currents

∑ − I exiting node k
known
currents

∑ for k = 1, 2...Nn (16.d) 

 

Where the potential differences ∆Pi ’s are computed by using the following generalization of 

(10): 

 ∆Pi = Im ∆Rm− i
m= Nks

Nke−1

∑
 
 
  

 k =1

NE

∑ + I Nke ∆Rm −i
m= Nke

N(k+1)s −1

∑
 
 
  

 k=1

NE−1

∑  (16.e) 

 

Again, the matrix representation given in (12.a) can be applied to (16). A detailed illustration of 

the matrix and vector distributions and sizes is provided in figure 3.  
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Figure 3: Composition of the matrix equation for a generic logging tool. 

 

The use of the modeling procedure discussed here not only allows to model generic logging 

tools, but also to model different configurations of the same instrument. This is particularly 

useful in the computation of circuit analogs for logging devices in a given formation [3]. This 

topic is briefly discussed in the following section.  
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CIRCUIT ANALOG COMPUTATION 

 

As it is going to be seen next, it is possible to represent a logging device operating in a given 

earthen formation by means of an analogous circuit, in which the formation is simulated by an 

impedance network whose nodes represents the tool’s electrodes. In such a representation, the set 

of impedances is totally determined by the geometry and conductivity distribution of the earthen 

formation, the physical arrangement of the tool’s electrodes and the tool’s frequency of 

operation. Notice, however, that it is independent of the tool’s electronics. 

 

In order to compute the impedance values for a given scenario (physical arrangement of 

electrodes, earthen formation and frequency of operation), the linear algebra problem has to be 

solved for a sequence of different tool configurations. In each of those configurations, the mutual 

impedances between one of the nodes and all others are measured. For simplicity, the impedance 

between nodes k and m is going to be referred as Z(k,m). Figure 4 illustrates the configuration 

that allows the computation of the impedances Z(1,2) and Z(1,3) for the example tool of figure 1.  

 

A1 A0 A2B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

+ V=0  -

IR2 (V)Io IR3 (V)

Node 1 Node 2 Node 3 Node 2

 

Figure 4: Configuration for measuring Z(1,2) and Z(1,3). 

 

As it can be seen from figure 4, the four-electroded tool under consideration has three actual 

nodes. Node 1 is composed by the electrode B, node 2 by electrodes A1 and A2, and node 3 by 
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A0. Notice that in the particular configuration depicted in figure 1, node 1 injects the survey 

current Io which is recollected as two separated return currents by nodes 2 and 3. Additionally, a 

zero potential condition has been imposed between the later. 

 

The situation presented in figure 4 is equivalent to that presented in figure 5, where the circuit 

analog is shown. 

 

Io

Node 1

Node 3
Node 2

Z(1,2)Z(1,3)

Z(2,3)

IR2IR3

-     V=0     +

+ 
 

V1 
 
-

 

Figure 5: Circuit analog configuration for measuring Z(1,2) and Z(1,3). 

 

From figure 5, it follows that : 

Z(1,2)= −
V1

I R2

 (17.a) 

and Z(1,3)= −
V1

IR 3

 (17.b) 

where, according to figure 4, V1  can be computed (after solving the linear algebra problem) as: 

V1 = ∆Pi
i = 3

6

∑  (17.c) 

 

In a similar way, two additional configurations to compute Z(2,3) and Z(2,1), and Z(3,1) and 

Z(3,2) can be realized; and it can be verified that, as it is expected to be, Z(k,m) = Z(m,k) is 
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always satisfied. Notice then, that in fact only two different configurations are required to fully 

determine the set of impedances in the circuit analog of the tool under consideration. 

 

In general, for an arbitrary tool with Nn nodes, the impedance values for its circuit analog can be 

computed by solving the linear algebra problem for a total of Nn-1 different configurations, say 

i=1,2...Nn-1. The procedure related to the ith configuration is described next. 

 

PARAMETER DEFINITION FOR THE ith CONFIGURATION 

A.- The original tool’s arrangement of electrodes and insulators is preserved. 

B.- The original tool’s short-circuits are maintained. 

C.- All nodal currents are redefined as follows: 

  Node i: Injects survey current Io. 

  All other nodes: Collect return currents, being IRk the return current at node k. 

(k≠i) 

D.- The original potential conditions are ignored and Nn-2 new zero potential conditions are 

imposed such that all nodes, except node i, are forced to be at the same potential. 

 

IMPEDANCE COMPUTATION IN THE ith CONFIGURATION 

A.- Once the linear algebra problem is solved and all currents are known, the potential Vi  

(between the node i and any one of the others) is computed. 

B.- The values of Z(i,k) for  k =  i+1, i+2 ... Nn  are computed as -Vi / IRk. 

 

 

CONCLUSIONS 

 

In the present report, the methodology for solving the linear algebra problem for a generic 

logging device was developed. A detailed discussion about the different kind of equations that 

must be considered and its associated matrix representation was presented. Finally, the analog 

circuit representation of a logging system was briefly discussed. 
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