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INTRODUCTION

This report describes the natural quartic spliger@thm developed for the enhanced solution of
the Time Harmonic Field Electric Logging problems & can be seen in [1], the enhanced
method uses a differentiator of second order ferdbmputation of one of the partial results.
When a cubic spline is used, subsequent applicaifosuch a differentiator leads to partial
results with discontinuous derivatives, affectihg guality of the final result. It is for that sz
that a quartic spline algorithm was developed. Tike of a spline of order 4 produces patrtial
results with continues first order derivatives, @fhnotoriously improves the quality of the final

result [1].

THE NATURAL QUARTIC SPLINE

A spline function is a piecewise polynomial functim which the composing polynomials satisfy
some continuity conditions [2]. In a quartic splie@ction, continuity conditions are imposed to
the function itself and to the first, second aniddtlorder derivatives. Spline functions are better
suited for interpolating data than polynomials heeatheir lack of the wild oscillations that
polynomials of high degree often present. Althougtiural cubic splines are considered the
“best” interpolating functions; due to the reasopased above, the development of a natural

quartic spline was required by our particular agadlon.

When using a spline function for interpolation poesps, the known data values are used as the
spline knots; which are those points where therpmiyial pieces are joined together. Figure 1
shows an example of how a spline function can el dier interpolating data points. In it, the

values y, yi, ... Y, correspond to the known data points, and theiciabs values,tt;, ... t are the



knots of the spline S(x). As it can be seen, tHmasgunction is composed by n functiongxy

each of one is defined over the intervat[t).

In the case of a quartic spline, the function&)Sare given by polynomials of fourth degree
whose coefficients must be determined. That acsolanta total of 5n unknowns, which can be
computed by imposing some conditions over the fanst$(x). As it was mention before, for a

guartic spline, these conditions are the continoiftthe spline function S(x) and its derivatives of

first, second and third order. These continuityditons are imposed at the knots.

Figure 1: Interpolation by using Spline functions.

In addition to been continuous, the spline funct®(®) must also attain the values of the data

points y, yi, ... y at the knots. These two conditions can be wriiefollows:

St) =y, for i=0,12,..n (1.a)
S(t,,)=S,(t,) fori=012.n-2 (1.b)
or, what is totally equivalent:
Si(t) =y, } .

for i=0,1,2,..n-1 2
St)=Yin @)

And the continuity conditions over the derivatias given by:



S|'(ti+1) = S|+1 (ti+1) for I = 0’112’ T 2 (3)
S'(ti.) = Sy (i) for i=012,.n-2 (4)
S(t..)=S" (t.,) for i=012,..n-2 (5)

As it can be verified, a total of 5n-3 independeqaations are defined by the conditions imposed
in (2), (3), (4) and (5). So, there are still thressing equations in order to complete the require
system of equations. These equations can be obtépemposing conditions to some of the

derivatives of S(x) at the extreme kngtand f.

A common choice is to make zero the highest contiswerivative in those points. When such a
conditions is imposed, the resulting spline functie called a natural spline [2]. By doing that
we obtain the following additional pair of equatson

Si(t,) =Sy, (1,) =0 (6)

Finally, the last equation will be provided by cdrmhing the second order derivative atAs it

will be seen latter, these has been done withritemiion of gaining a little more control over the
behavior of the spline function at large abscisslaes. This is very important in our particular
application because the data points to be intetglare spaced in a logarithmic fashion. In this
way, consecutive data points with larger abscissleg are farther from each other than
consecutive data points with smaller abscissass Fureases the chances of the interpolating
spline function to oscillate in the region of largescissa values. At this moment, for simplicity,
the second derivative atwill be equated to zero.

S, (t,)=0 )

Then, a set of 5n equations, given in (2), (3), (8), (6) and (7), with 5n unknowns have been
defined. By solving it, the coefficients of theumttions §x) will be obtained and therefore the

natural quartic spline function S(x) will be deténed.



SIMPLIFICATION OF THE SYSTEM OF EQUATIONS

Although the system of equations have been alretdined in the previous section, some
algebra can be used in order to simplify it andrionp the efficiency, from a computational point

of view, of the final natural quartic spline algbm.

First of all, let us define the set of variabledar i = 0,1,2...n as the values of the third order
derivative of the spline function S(x) at the kndthat is:
z, =S"(t,) for 1 =0,,2..n (8)

Then, let us define the third derivative of thediion S(x) as follows:
L (x-t) +% (t.-x) for i=0,1,2..n-1 9)

Sm - i
=2

whereh;, is given byt,,; —t

As it can be seen, the derivatives defined in &isfy the continuity condition in (5). This can be

easily verified by noticing tha®"(t,) =z, andS"(t,,,)=z,,,.

Expressions for the functions(§ can be obtained by integrating (9) three tinig.doing so,

gathering coefficients and trickily choosing théegration constants, the following expression is

obtained:
Z Z.
S(X)=—- (x-t)" —— (t,,, - %)’
|(X) 24h (X |) 24h| (|+1 X)
+C,(X—t)(t,, —X)+D,(x-t)+ E(t.,, —X) fori=012..n-1 (20)

where the s, D’s and Es are coefficients to be determined in terms efils.

By imposing the continuity and data fitting conalits defined in (2) to (10), the following

expressions for the coefficientsPand Es are found:

D, =-42 h2+L8  for {=0,1,2..0-1 (11.)
24 h,



E=2h2+dl  fori=012.n1 (11.b)
"2ty

Now, by differentiating (10), the first derivatieé S(x) can be computed:

S{(x)=%(x—ti) (t,-X)°+C (t.,+t -2X)+D. —E, fori=01..n-1 (12)

6h

from where, by replacing (11) and imposing the tanty condition defined in (3), the following

equation is obtained:

% z, + (hi - 5 (i-hy, z 2—2 z,+C h+C_ h, =A_-A  fori=12,.n1 (13)

with A, given by:
YTV YTV
Yot —t h,

for i=0,1,2,..n-1 (14)

Similarly, but by differentiating twice, the secoddrivative is obtained:

S”(x)— L (x t)’ - (t,+1 x)?-2C~ fori=0,1,2,..n-1 (15)

from where, by imposing the continuity conditiorfided in (4), the next expression follows:

(h+h.)
4

C_,=C + for 1 =1,2,..n-1 (16)

Notice, just for verification, that an additionaffdrentiation on (15) leads to the initial defiom

given in (9).

Next, by replacing (16) into (13) and gatheringrsythe following expression is obtained:

2 2
?1 z_, +X} z, —h—é z.,+8x C =8(A,_,-4) for i=1,2,.n-1 (17)
with X, given by:
X;=h+h_=t, -t fori=12.n-1 (18)



Observe that (17) and (16) constitutes a systeBm<f equations with 2n-2 unknowns, which are
the z's for i = 1,2...n-1 and the,; 8 for i = 0,1,2...n-2. That is because the cond#iimposed in
(6) and (7) define the values of z, and G.. Indeed, it follows from (6) that,z= z, = 0; and,
from (6), (7) and (15) that,G= 0.

In this way, by solving (16) and (17) and replacinip (10) along with (11), the spline function
S(x) is finally obtained. Nevertheless, the solutad (16) and (17) can be performed in a very

efficient way by using a recursive algorithm, whighl be developed in the next section.

RECURSIVE COMPUTATION OF THE COEFFICIENTS

The particular characteristics of the equationgioled in the previous section allow the use of a
recursive procedure in their solution. The use wfhsa procedure increases enormously the

efficiency of the algorithm because matrix invenrsis avoided.

First of all, notice that (16) provides a recursmeans for the computation of thesCin fact, by

iterating on (16) itself, the following formula ftie C's results:

n-1
C=C+Y 2% for i=01,2..n2 (19)

k=i+1
where thex,’s are the same as defined in (18), angd €0 as it was determined in the previous

section.

Then, by replacing (19) into (17) and gathering sderms, the next expression is obtained:

2 2 n-1
Di;l Zi, +Xi22i +(2X Xin _%) Z, +2X ZXk z, =8l -4) fori=12,..n1 (20)

3 k=i+2

which, by recalling that,z= z, = 0, can be rewritten in matrix form as:
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(21)

As it can be seen from (21), the system matrix lmamasily transformed to upper triangular by

performing some row operations.

In order to simplify the notation let us denote thatrix, the unknown vector and the constant

vector in (21) asM, z andv respectively. Then, as in the standard notation,wil make

reference to the element located at row i and colpof M, and zand v to the element located

at position i ofz andv respectively. By doing so, (21) becomes:

Mz=v

or, alternatively:

I______l

r'qln—

(22.a)

(22.b)

Then, the matriM can be transformed to upper triangular by applyiregforward elimination

recursion described as Algorithm 1. Notice that ow operation oM must be performed on

too, in order to maintain the validity of the edaat Also notice than in every step of the
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recursion, where a row operation is performed, sofitee m;’s and ys are modified (on place

computations are performed).

m
factor = —k=Lk

mk,k
for j = k+lto n-1
m,,; = my,,; — factor m,
end for
My = 0

Vi = V., — factor v
end for

Algorithm 1: Forward Elimination

After executing Algorithm 1, (22) is reduced to @pper triangular system of equations in which
the values of the;’s can be easily computed by backward recursiogodthm 2 presents a
backward recursion that simultaneously computesGhe by making use of (16). On place

computation is also used in Algorithm 2.

In summary, the recursive procedure for computiregdoefficients of the natural quartic spline
S(x) must be implemented as follows:

1.- Initialization of the values otz z, and G...

2.- Construction of the matrix system in (21) lsyng (20).

3.- Reduction of (21) to an upper triangular systey executing Algorithm 1.
4.- Computation of the; 8 and the #s by executing Algorithm 2.

5.- Computation of the 3 and the Es by using (11).



6.- Determination of the;&)’s by substituting the coefficients into (10).

z,=0;, z, =0; C_ =0;
for k = n-1to 1 stepsize-1

zZ, =8v,

for j = n-1 to k+l stepsize-1

zZ = zk—mk’j ZJ-

end for
g = B
mk,k
Z X
C., = C +—5
k-1 k 4
end for

Algorithm 2: Backward computation of theszand Gs.

NATURAL QUARTIC SPLINE WITH CONCAVITY APPROXIMATION

As it was mentioned before, in our particular apgdion the data points to be interpolated are
spaced logarithmicaly. Then, for large abscissaiesl the spline function is more likely to

oscillate. One way of reducing this problem is bma@se an appropriate value 8}, (t,) such

that it approximates the concavity of the actualcfion being interpolated. In fact, the value of
the concavity, or second derivative, atan be properly approximated by finite differendgg

doing so, condition (7) becomes:

Siat)=%¥ = L (y“ “Yna y“‘l_y“_zj = hl A, -4A,) (23)
n-1

t,-t Nt -t t -t



which together with (6) and (15), defines the falilog new value for C;:

C_, =-——2= 24
= (24)

The new value of G defined in (24) produces some little changes endfuations. Now, when

(19) is replaced into (17) the next expressiorofedl instead of (20):

8 (Ai—l _Ai =Xi Cn 1)

2 2 n-1
- D‘??L Ziy +Xi22i +(2Xi Xin _%,L) Z,,t2X ZXk Zy for i=12,..n-1 (25)

k=i+2

As it can be seen from (25), the only componergcd in (22) is the vecter whose elements
are now given by:
vi=A_,-A0-XC,., fori=12.n-1 (26)

The rest of the procedure remains exactly the ssmewas described in the previous section.

CONCLUSIONS

Although natural cubic splines are considered thest” interpolating functions, the use of a
differentiator of order two in the enhanced solutad the Time Harmonic Field Electric Logging
problem make the use of a natural quartic spline@ensuitable. However, quartic spline
algorithms are more complex and time consumingoAlsey are more likely to oscillate than
cubic spline algorithms. This last problem can bbkstantially reduced by using the remaining
free parameters in the set of equations for apprattng better the behavior of the data. In this

particular case, approximation of the concavitlaege abscissa values was used.
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