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INTRODUCTION 

 

This report describes the natural quartic spline algorithm developed for the enhanced solution of 

the Time Harmonic Field Electric Logging problem. As it can be seen in [1], the enhanced 

method uses a differentiator of second order for the computation of one of the partial results. 

When a cubic spline is used, subsequent application of such a differentiator leads to partial 

results with discontinuous derivatives, affecting the quality of the final result.  It is for that reason 

that a quartic spline algorithm was developed. The use of a spline of order 4 produces partial 

results with continues first order derivatives, which notoriously improves the quality of the final 

result [1]. 

 

 

THE NATURAL QUARTIC SPLINE 

 

A spline function is a piecewise polynomial function in which the composing polynomials satisfy 

some continuity conditions [2]. In a quartic spline function, continuity conditions are imposed to 

the function itself and to the first, second and third order derivatives. Spline functions are better 

suited for interpolating data than polynomials because their lack of the wild oscillations that 

polynomials of high degree often present. Although natural cubic splines are considered the 

“best” interpolating functions; due to the reason exposed above, the development of a natural 

quartic spline was required by our particular application. 

 

When using a spline function for interpolation purposes, the known data values are used as the 

spline knots; which are those points where the polynomial pieces are joined together. Figure 1 

shows an example of how a spline function can be used for interpolating data points. In it, the 

values y0, y1, ... yn correspond to the known data points, and their abscissa values t0, t1, ... tn are the 
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knots of the spline S(x). As it can be seen, the spline function is composed by n functions Si(x) 

each of one is defined over the interval [ti,t(i+1)].  

 

In the case of a quartic spline, the functions Si(x) are given by polynomials of fourth degree 

whose coefficients must be determined. That accounts for a total of 5n unknowns, which can be 

computed by imposing some conditions over the functions Si(x). As it was mention before, for a 

quartic spline, these conditions are the continuity of the spline function S(x) and its derivatives of 

first, second and third order. These continuity conditions are imposed at the knots. 
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S(x) = Si (x) t i ≤ x ≤ t ( i +1) for i = 0,1,2, .. (n−1)

 

Figure 1: Interpolation by using Spline functions. 

 

In addition to been continuous, the spline function S(x) must also attain the values of the data 

points y0, y1, ... yn at the knots. These two conditions can be written as follows: 

S(t i ) = y i for i = 0,1,2,...n  (1.a) 

Si (t i+1) = Si+1(t i +1) for i = 0,1,2,...n − 2 (1.b) 

or, what is totally equivalent: 

Si (t i ) = yi

Si (t i+1) = y i +1

 
 
 

for i = 0,1,2,...n−1 (2) 

 

And the continuity conditions over the derivatives are given by:  
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′ S i (t i+1) = ′ S i+1(t i +1) for i = 0,1,2,...n − 2 (3) 

′ ′ S i (t i +1) = ′ ′ S i +1 (t i +1) for i = 0,1,2,...n − 2 (4) 

′ ′ ′ S i (t i+1) = ′ ′ ′ S i+1 (t i +1) for i = 0,1,2,...n − 2 (5) 

 

As it can be verified, a total of 5n-3 independent equations are defined by the conditions imposed 

in (2), (3), (4) and (5). So, there are still three missing equations in order to complete the required 

system of equations. These equations can be obtained by imposing conditions to some of the 

derivatives of S(x) at the extreme knots t0 and tn. 

 

A common choice is to make zero the highest continuous derivative in those points. When such a 

conditions is imposed, the resulting spline function is called a natural spline [2]. By doing that 

we obtain the following additional pair of equations: 

′ ′ ′ S 0 (t0) = ′ ′ ′ S n−1 (tn) = 0 (6) 

 

Finally, the last equation will be provided by conditioning the second order derivative at tn. As it 

will be seen latter, these has been done with the intention of gaining a little more control over the 

behavior of the spline function at large abscissa values. This is very important in our particular 

application because the data points to be interpolated are spaced in a logarithmic fashion. In this 

way, consecutive data points with larger abscissa values are farther from each other than 

consecutive data points with smaller abscissas. This increases the chances of the interpolating 

spline function to oscillate in the region of large abscissa values. At this moment, for simplicity, 

the second derivative at tn will be equated to zero. 

′ ′ S n−1 (tn) = 0 (7) 

 

Then, a set of 5n equations, given in (2), (3), (4), (5), (6) and (7), with 5n unknowns have been 

defined. By solving it, the coefficients of the n functions Si(x) will be obtained and therefore the 

natural quartic spline function S(x) will be determined. 
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SIMPLIFICATION OF THE SYSTEM OF EQUATIONS 

 

Although the system of equations have been already defined in the previous section, some 

algebra can be used in order to simplify it and improve the efficiency, from a computational point 

of view, of the final natural quartic spline algorithm.  

 

First of all, let us define the set of variables zi for i = 0,1,2...n as the values of the third order 

derivative of the spline function S(x) at the knots. That is: 

zi = ′ ′ ′ S (t i ) for i = 0,1,2...n  (8) 

 

Then, let us define the third derivative of the function Si(x) as follows: 

′ ′ ′ S i (x) =
zi +1

hi

(x − t i ) +
zi

hi

(t i +1 − x) for i = 0,1,2...n−1 (9) 

where hi  is given by t i+1 − t i . 

 

As it can be seen, the derivatives defined in (9) satisfy the continuity condition in (5). This can be 

easily verified by noticing that ′ ′ ′ S i (t i ) = zi  and ′ ′ ′ S i (t i+1) = zi +1. 

 

Expressions for the functions Si(x) can be obtained by integrating (9) three times. By doing so, 

gathering coefficients and trickily choosing the integration constants, the following expression is 

obtained: 

Si (x) =
zi +1

24 hi

(x − t i )
4 −

zi

24 hi

(t i +1 − x)4  

+ Ci (x − t i )(t i+1 − x) + Di (x − t i ) + Ei (t i+1 − x) for i = 0,1, 2...n−1 (10) 

where the Ci’s, Di’s and Ei’s are coefficients to be determined in terms of the zi’s. 

 

By imposing the continuity and data fitting conditions defined in (2) to (10), the following 

expressions for the coefficients Di’s and Ei’s are found:  

Di = −
zi +1

24
hi

2 +
y i +1

hi

for i = 0,1,2...n−1 (11.a) 
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Ei =
zi

24
hi

2 +
y i

hi

for i = 0,1,2...n−1 (11.b) 

 

Now, by differentiating (10), the first derivative of Si(x) can be computed: 

′ S i (x) =
zi +1

6 hi

(x − t i )
3 +

zi

6 hi

(t i+1 − x)3 + Ci (t i +1 + t i − 2 x)+ D i − Ei for i = 0,1,...n−1 (12) 

from where, by replacing (11) and imposing the continuity condition defined in (3), the following 

equation is obtained: 

hi −1
2

24
zi−1 +

(hi
2 − hi −1

2 )

8
zi −

hi
2

24
zi +1 + Ci hi + Ci−1 hi −1 = ∆ i −1 − ∆ i for i =1,2,...n−1 (13) 

with ∆ i  given by: 

∆ i =
yi +1 − yi

t i +1 − t i

=
y i +1 − y i

hi

for i = 0,1,2,...n−1 (14) 

 

Similarly, but by differentiating twice, the second derivative is obtained:  

′ ′ S i (x) =
zi +1

2 hi

(x − t i )
2 −

zi

2 hi

(t i +1 − x)2 − 2 Ci for i = 0,1,2,...n−1 (15) 

from where, by imposing the continuity condition defined in (4), the next expression follows: 

Ci−1 = Ci +
(hi + hi −1)

4
zi for i =1,2,...n−1 (16) 

 

Notice, just for verification, that an additional differentiation on (15) leads to the initial definition 

given in (9). 

 

Next, by replacing (16) into (13) and gathering terms, the following expression is obtained: 

hi −1
2

3
zi−1 + χ i

2 zi −
hi

2

3
zi +1 + 8 χi Ci = 8 (∆ i −1 − ∆ i ) for i = 1,2,...n−1 (17) 

with χ i  given by: 

χ i = hi + hi −1 = t i +1 − t i −1 for i = 1,2,...n −1 (18) 
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Observe that (17) and (16) constitutes a system of 2n-2 equations with 2n-2 unknowns, which are 

the zi’s for i = 1,2...n-1 and the Ci’s for i = 0,1,2...n-2. That is because the conditions imposed in 

(6) and (7) define the values of z0, zn and Cn-1. Indeed, it follows from (6) that z0 = zn = 0; and, 

from (6), (7) and (15) that Cn-1 = 0. 

 

In this way, by solving (16) and (17) and replacing into (10) along with (11), the spline function 

S(x) is finally obtained. Nevertheless, the solution of (16) and (17) can be performed in a very 

efficient way by using a recursive algorithm, which will be developed in the next section. 

 

 

RECURSIVE COMPUTATION OF THE COEFFICIENTS 

 

The particular characteristics of the equations obtained in the previous section allow the use of a 

recursive procedure in their solution. The use of such a procedure increases enormously the 

efficiency of the algorithm because matrix inversion is avoided. 

 

First of all, notice that (16) provides a recursive means for the computation of the Ci’s. In fact, by 

iterating on (16) itself, the following formula for the Ci’s results: 

Ci = Cn−1 +
zk χk

4k =i +1

n−1

∑ for i = 0,1,2,...n− 2  (19) 

where the χ i ’s are the same as defined in (18), and Cn-1 = 0 as it was determined in the previous 

section. 

 

Then, by replacing (19) into (17) and gathering some terms, the next expression is obtained: 

hi −1
2

3
zi −1 + χi

2 zi + (2 χi χi +1 −
hi

2

3
) zi +1 + 2 χi χk zk

k= i +2

n −1

∑ = 8 (∆ i −1 − ∆ i ) for i = 1,2,...n−1 (20) 

which, by recalling that z0 = zn = 0, can be rewritten in matrix form as: 
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χ1
2 2 χ1 χ2 −

h1
2

3
2 χ1 χ3 ... 2χ1 χn −1

h1
2

3
χ2

2 2 χ2 χ3 −
h2

2

3
... 2χ2 χn−1

0
h2

2

3
χ3

2 ... 2χ3 χn−1

.

.

.
.
.

.
.
.

.
.
.

.

0 0 0 ... χn −1
2

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

z1

z2

z3

.

.

.

zn−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 8

∆0 − ∆1

∆1 − ∆2

∆2 − ∆3

.

.

.

∆n− 2 − ∆ n−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (21) 

 

As it can be seen from (21), the system matrix can be easily transformed to upper triangular by 

performing some row operations.  

 

In order to simplify the notation let us denote the matrix, the unknown vector and the constant 

vector in (21) as M, z and v respectively. Then, as in the standard notation, mi,j will make 

reference to the element located at row i and column j of M, and zi and vi to the element located 

at position i of z and v respectively. By doing so, (21) becomes: 

 

M z = v (22.a) 

 

or, alternatively: 

 

m1,1 m1,2 m1,3 ... m1,n−1

m2,1 m2,2 m2, 3 ... m2,n−1

0 m3,2 m3,3 ... m3, n−1

.

.

.
.
.

.
.
.

.
.
.

.

0 0 0 ... mn−1, n−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

z1

z2

z3

.

.

.

zn−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 8

v1

v2

v3

.

.

.

vn−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (22.b) 

 

Then, the matrix M can be transformed to upper triangular by applying the forward elimination 

recursion described as Algorithm 1. Notice that any row operation on M must be performed on v 

too, in order to maintain the validity of the equation. Also notice than in every step of the 
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recursion, where a row operation is performed, some of the mi,j’s and vi’s are modified (on place 

computations are performed). 

 

            

for k = 1 to n− 2

factor = mk +1,k

mk,k

for j = k+1 to n−1

m k+1, j = mk+1,j − factor mk, j

end for

mk+1, k = 0

vk+1 = vk+1 − factor vk

end for

      

 

 

Algorithm 1: Forward Elimination 

 

After executing Algorithm 1, (22) is reduced to an upper triangular system of equations in which 

the values of the zi’s can be easily computed by backward recursion. Algorithm 2 presents a 

backward recursion that simultaneously computes the Ci’s by making use of (16). On place 

computation is also used in Algorithm 2. 

 

In summary, the recursive procedure for computing the coefficients of the natural quartic spline 

S(x) must be implemented as follows: 

 

 1.- Initialization of the values of z0 , zn and Cn-1. 

 2.- Construction of the matrix system in (21) by using (20). 

 3.- Reduction of (21) to an upper triangular system by executing Algorithm 1. 

 4.- Computation of the Ci’s and the zi’s by executing Algorithm 2. 

 5.- Computation of the Di’s and the Ei’s by using (11). 
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 6.- Determination of the Si(x)’s by substituting the coefficients into (10). 

 

 

z0 = 0; zn = 0; Cn −1 = 0;

for k = n −1 to 1 step size−1

zk = 8 vk

for j = n−1 to k+1 step size−1

zk = zk − m k,j zj

end for

zk =
zk

mk,k

Ck−1 = Ck +
zk χk

4

end for

     

  

 

Algorithm 2: Backward computation of the zi’s and Ci’s. 

 

 

NATURAL QUARTIC SPLINE WITH CONCAVITY APPROXIMATION 

 

As it was mentioned before, in our particular application the data points to be interpolated are 

spaced logarithmicaly. Then, for large abscissa values, the spline function is more likely to 

oscillate. One way of reducing this problem is to choose an appropriate value for ′ ′ S n−1 (tn)  such 

that it approximates the concavity of the actual function being interpolated. In fact, the value of 

the concavity, or second derivative, at tn can be properly approximated by finite differences. By 

doing so, condition (7) becomes: 

 

′ ′ S n−1 (tn) = Ψn =
1

t n − t n−1

yn − yn −1

tn − tn−1

−
yn −1 − yn− 2

tn −1 − t n− 2

 
 
  

 
 =

1

hn−1

(∆ n−1 − ∆n −2) (23) 
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which together with (6) and (15), defines the following new value for Cn-1: 

Cn−1 = −
Ψn

2
 (24) 

 

The new value of Cn-1 defined in (24) produces some little changes in the equations. Now, when 

(19) is replaced into (17) the next expression follows instead of (20): 

 

8 (∆ i −1 − ∆ i − χi Cn−1)  

=
hi −1

2

3
zi−1 + χi

2 zi + (2 χi χ i+1 −
hi

2

3
) zi +1 + 2 χi χk zk

k =i + 2

n−1

∑ for i =1,2,...n−1 (25) 

 

As it can be seen from (25), the only component affected in (22) is the vector v, whose elements 

are now given by: 

v i = ∆ i −1 − ∆ i − χi Cn−1 for i =1,2,...n− 1 (26) 

 

The rest of the procedure remains exactly the same as it was described in the previous section. 

 

 

CONCLUSIONS 

 

Although natural cubic splines are considered the “best” interpolating functions, the use of a 

differentiator of order two in the enhanced solution of the Time Harmonic Field Electric Logging 

problem make the use of a natural quartic spline more suitable. However, quartic spline 

algorithms are more complex and time consuming. Also, they are more likely to oscillate than 

cubic spline algorithms. This last problem can be substantially reduced by using the remaining 

free parameters in the set of equations for approximating better the behavior of the data. In this 

particular case, approximation of the concavity at large abscissa values was used. 
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