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INTRODUCTION 

 

The purpose of this report is to present a brief description of the methodology used for solving 

the potential difference integral in the electric logging problem. The description is mainly 

focused on the mathematical manipulations that are performed in order to make the numerical 

solution of the integral more suitable from a computational point of view. Details of the 

computational algorithms are not provided at this moment. 

 

 

SEPARATION IN TWO INTEGRALS 

 

The integral we are interested in solving, given in equation (52) of [1],  can be written as follows: 

∆R(z) = ¡Error! ¡Error! (1) 

where   ß = ß(λ) = 2, λ2+jωσ   (2) 

ro is the radius of the logging tool, h is the segment length, ω is the angular frequency, σ is the 

electric conductivity of the zone 1, Γ is the reflection factor in zone 1 and Ko and Io are the zero 

order modified Bessel functions of second and first kind. 

 

By using the following two complementary exponential windows: 

w1(λ) = Exp ¡Error! (3.a) 

w2(λ) = 1 - Exp ¡Error! (3.b) 

 

The integral in (1) can be separated in two integrals as follows: 



∆R(z) =  ¡Error!  [ I1(z) + I2(z) ] (4) 

where: 

I1(z) = ¡Error! ¡Error! (5.a) 

I2(z) = ¡Error! ¡Error! (5.b) 

 

 

COSINE TRANSFORM INTEGRAL 

 

It is possible to define the two functions G1(λ) and F1(λ) as: 

G1(λ) = ß  ¡Error!  Exp¡Error! (6) 

F1(λ) = ¡Error! (7) 

so that the integral in (5.a) can be rewritten as: 

I1(z) = ¡Error! ¡Error! (8) 

It can be seen from (8) that I1(z) is the inverse fourier transform of the product of the two 

functions G1(λ) and F1(λ). By using the product property of the fourier transform, I1(z) can be 

calculated by a linear convolution as follows: 

I1(z) = g1(z) * f1(z) (9) 

where g1(z) and f1(z) are the inverse fourier transforms of G1(λ) and F1(λ) respectively. 

 

The function f1(z) can be computed analytically and is given by: 

f1(z) =  1/16 [ z2 + 3hz + 9h2/4 ] for  -3h/2 ≤ z ≤ -h/2 

 1/16 [ -2z2 + 3h2/2 ]  for -h/2 ≤ z ≤ +h/2 

 1/16 [ z2 - 3hz + 9h2/4 ] for +h/2 ≤ z ≤ +3h/2 

 0  otherwise (10) 

while the function g1(z) has to be computed numerically. Due to the even symmetry of G1(λ), 

g1(z) can be written as: 

g1(z) = ¡Error! ¡Error! (11) 

 



Notice that because the oscillatory behavior of the integrand due to F1(λ) has been removed and 

that because the slope has been improved by the exponential window, the integral in (11) can be 

nicely solved by using the Anderson’s integration technique [2]. 

 

 

SINE TRANSFORM INTEGRAL 

 

Proceeding in the same way as in the cosine transform integral, two functions G2(λ) and F2(λ) 

can be defined as follows: 

G2(λ) =  ¡Error!  ¡Error!  ¡Error! (12) 

F2(λ) =  ¡Error! (13) 

so that the integral in (5.b) can be rewritten as: 

I2(z) = ¡Error! ¡Error! (14) 

and as in the previous case, I2(z) can be expressed by the linear convolution of the inverse fourier 

transforms of G2(λ) and F2(λ); they are g2(z) and f2(z) respectively. 

 

Similarly, the function f2(z) can be computed analytically and is given by: 

f2(z) =  -j /8 [ z + 3h/2 ] for  -3h/2 ≤ z ≤ -h/2 

 j z /4    for -h/2 ≤ z ≤ +h/2 

 -j /8  [ z - 3h/2] for +h/2 ≤ z ≤ +3h/2     

 0 otherwise (15) 

while the function g2(z) has to be computed numerically. Due to the odd symmetry of G2(λ), 

g2(z) can be written as: 

g2(z) = ¡Error! ¡Error! (16) 

where the Anderson’s integration technique [2] can be used again. 

 

However, there is a practical problem with this last integral. It happens to be that g2(z) tends to 

infinity when z approaches zero, which is due to the behavior of G2(λ) for large values of λ. As it 

can be verified G2(λ) -> -1 as λ -> ∞. This fact is responsible for big computational errors when 

evaluating the discrete convolution of g2(z) with f2(z) for values of z that are smaller than 3h/2. 



Hopefully, this problem can be solved by removing from the integral the contribution due to 

G2(λ) when λ goes to infinity. It can be done as follows: 

g2(z) = ¡Error! ¡Error! - ¡Error! ¡Error! (17) 

where the first integral is going to be referred as g2+(z) and the second one as g2-(z). Now the 

integral I2(z) can be expressed in terms of the two new integrals as: 

I2(z) = g2+(z) * f2(z) + g2-(z) * f2(z) (18) 

 

It can be verified that there is an analytical solution for g2-(z). It is given by: 

 g2-(z) =  - ¡Error! ¡Error! =  - ¡Error! (19) 

and its convolution with f2(z) can also be computed analytically and is given by: 

ξ(z) = g2-(z) * f2(z) = ¡Error!  ln¡Error! - ¡Error!  ln¡Error! - ¡Error!  ln¡Error! (20) 

Notice that special care must be taken during the numerical evaluation of ξ(z) at z = -3h/2, -h/2, 

h/2 and 3h/2. 

 

 

FINAL REVIEW 

  

Finally, the original integral presented in (1) can be computed as: 

∆R(z) =  ¡Error!  [ g1(z) * f1(z) + g2+(z) * f2(z) + ξ(z) ] (21) 

where f1(z), f2(z) and ξ(z) are known functions given by equations (10), (15) and (20) 

respectively, while g1(z) and g2+(z) are given by: 

g1(z) = ¡Error! ¡Error! (22) 

g2+(z) = ¡Error! ¡Error! (23) 

and can be evaluated by using the Anderson’s integration technique [2]. 
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