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INTRODUCTION 

 

This report presents an attempt to compute an asymptotic approximation for the integral involved 

in the solution of the time harmonic field electric logging problem presented in [1]. Due to the 

huge computation time required to evaluate that integral by conventional procedures, and due to 

the failure of more advanced integration techniques, we are attempting to find such 

approximation. The availability of an asymptotic approximation not only would simplify the 

numerical solution of the problem, but also would help for a better understanding of the problem. 

 

 

FIRST ATTEMPT: THE MELLIN TRANSFORM METHOD 

 

The integral we are interested in computing is presented in [1] and is given by: 

∆R(z) =
4

r0 σ hπ2 ß
K0(ß r0) + Γ I0(ßr0)

K0
' (ß r0) + Γ I0

' (ßr0)

 

  
 

  0

∞

∫
Sin3(λh /2)

λ3 Cos(λz) dλ  (1) 

where ß = ß(λ ) = ± λ2 + jωµ σ , r0 is the radius of the logging tool, h is the segment length, ω is 

the angular frequency of operation, σ is the conductivity, Γ is the reflection coefficient and I0  and 

K0 are the zero order Modified Bessel functions of first and second kind. 

 

For simplicity, let us first consider the homogeneous problem in which Γ1 is equal to zero. So, 

(1) becomes: 

∆R(z) =
4

r0 σ hπ2 ß
K0(ß r0)

K0
' (ß r0)

 

  
 

  0

∞

∫
Sin3(λh /2)

λ3 Cos(λz) dλ  (2) 

 

What we basically want to do is to find an approximation of ∆R(z) for large values of z.  
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The integral in (2) belongs to a general class of integrals of the form: 

I(z) = f(λ) h(zφ(λ)) dλ
a

b

∫  (3) 

where: 

f( λ) = ß
K0(ß r0)

K0
' (ß r0)

 

  
 

  
Sin3(λh / 2)

λ3 , (4) 

φ(λ) = λ , (5) 

and  h(zφ(λ)) = Cos(zλ) (6) 

 

According to the Mellin Transform Method [2], the possible critical points for an asymptotic 

expansion of (3) are given by: 

* The endpoints of integration; that is λ = 0 and λ = ∞. 

* Those values of λ where φ(λ) or f (λ) are not infinitely differentiable. 

* Those values of λ where φ(λ) or its derivative vanish, which happens to be at λ = 0. 

 

It is clear from (2) that λ = ∞ is not a critical point. That is because (6) oscillates faster and faster 

when λ goes to infinity. So, the contributions to the final value of the integral are smaller as λ 

increases. Then, the only critical point seems to be λ = 0. 

 

By following the procedure described in [2], a possible expansion can be given by: 

I(z)
z→∞ ≈ z−1− am pmn

n

j()(− logz)j M
(n− j)

[h;s]
s=1+amj= 0

n

∑
n= 0

N (m )

∑
m= 0

∞

∑  (7) 

where the coefficients am and pmn are defined in [2] and M[h;s]  is the Mellin Transform of h(t), 

which in our case is given by: 

M[Cos(t);s] = Γ(s) Cos(πs/ 2) (8) 

where Γ(s)  is the gamma function. 

 

The approximation given by (7)  can be simplified even more by assuming: 

f(λ)λ →0
≈ γ0 λµ 0 and φ(λ)λ →0

≈ α 0 λν0 α0 ,ν0 > 0 (9) 
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If (9) holds, then (7) becomes: 

I(z) z→∞ ≈ (α0 z)−(1+ µ 0 )/ ν0
γ0

ν0

M[h;(1+ µ0)/ ν0 ] (10) 

 

By using (8) and α0 = ν0 = 1, which follows from (5) and (9), into (10) we get: 

I(z) z→∞ ≈ z−(1+ µ 0 ) γ0 Γ(1+ µ0) Cos(π(1+ µ0)/ 2) (11) 

 

It still remains to verify if the function given in (4) can be expressed as in (9). If that happens to 

be the case, then (11) would be the approximation we are looking for. 

 

First, let us consider the D.C. case, in which ß = λ and (4) becomes: 

f( λ) =
K0(λ r0)

K0
' (λ r0)

 

  
 

  
Sin3(λh / 2)

λ2  (12) 

  

By using the following approximations: 

K 0(x)
x→0

≈ − ln x , (13.a) 

K 0
' (x)

x→0
≈ −

1

x
, (13.b) 

and  Sin(x)
x→0

≈ x (13.c) 

we get: 

f( λ)λ →0
≈

h3r0

8
λ2 ln(λ r0) (14) 

where it is evident that f(λ) cannot be expressed as in (9). Therefore the approximation given by 

(11) cannot be used. 

 

Now, let us see if (11) could be valid for the high frequency case. For a very high frequency, it 

can be seen that ß ≈ γ = jω µσ . Then, f(λ) is given by constant and (11) reduces to zero. 

Again, the approximation given by (11) cannot be used. 
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There is still another simplification for (7) when functions with logarithmic behavior are 

involved. Notice from (14) that in the D.C. case, f(λ) presents a logarithmic behavior for λ -> 0. 

Again, by following the procedure described in [2], if f(λ) can be approximated by: 

f( λ)λ →0
≈ γ01λµ 0 ln λ + γ 00 λµ 0  (15) 

then the asymptotic expansion given by (7) reduces to: 

I(z) z→∞ ≈ z−(1+ µ 0 ) γ 01 ln z M[h,1+ µ0 ] − γ 00M[h,1 + µ0 ]− γ01

d

ds
M[h,s]

s=1+µ 0

 
 
 

 
 
 

 (16) 

 

By comparing (14) with (15) we obtain: 

γ 01 =
h3 r0

8
; γ 00 = 0 and µ0 = 2 (17) 

 

Now, by using (8), we can compute the terms in (16). They are: 

M[h;1+ µ0] = M[h;3] = Γ(3) Cos(3π / 2) = 0 (18.a) 

d

ds
M[h,s]

s=1+µ 0

=
d

ds
Γ(s) Cos(sπ / 2){ }

s=1+ µ 0

=
d

ds
Γ(s) 

 
 
 

Cos(sπ / 2) −
π
2

Sin(sπ / 2)Γ(s)
 
 
 

 
 
 

s=1+ µ 0

 

⇒
d

ds
M[h,s]

s= 3

= −
π
2

Sin(3π / 2) Γ(3) = π  (18.b) 

 

By replacing (17) and (18) into (16): 

I(z) z→∞ ≈
−π r0 h3z−3

8
 (19) 

 

Finally, an asymptotic expansion for ∆R(z) is obtained by substituting (19) into (2): 

∆R(z)
z→ ∞ ≈

−h2 z−3

2πσ
 (20) 

Notice that this approximation is only valid for the homogeneous D.C. case. 
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SECOND ATTEMPT: THE ELECTRIC DIPOLE 

 

After inspecting (20), its great similarity to the far field generated by an electric dipole can be 

noticed. For this reason, we are going to attempt a new approximation of (2) starting from the 

field generated by an electric dipole. 

 

The magnetic and electric fields generated in an homogeneous dielectric medium by a 

infinitesimal current element of length dl and strength  I Cos(ωt) are given by: 

H (r,θ,φ) =
I dl

4π
Sinθ

jβ
r

+
1

r2

 
 

 
 e

− jβ r a φ  (21) 

E (r,θ,φ) = − j
η Idl

2πβ
Cosθ

jβ
r2 +

1

r3

 
 

 
 e

− jβ r a r − j
ηI dl

4πβ
Sinθ −

β2

r
+

jβ
r2 +

1

r3

 
 
  

 
e− jβ r a θ  (22) 

where β = ω µ ε and η = µ / ε.  

 

A full description of how these fields are computed is presented in [3]. 

 

Now, we are interested in approximate ∆R(z). It can be verified from [1], that the expression for 

∆R(z) given in (2) was obtained from the following definition: 

∆R(z) =
1

I
E z(z, r0) dz 

z− h / 2

z+ h / 2

∫  (23) 

where E z (z, r0)  is the z component of the electric field generated by the current element along the 

tool surface, I is its current strength and h is the segment length. 

 

By considering that the expansion we are looking for is for large values of z and that r0 is 

relatively small compared to those values of z, we can make the following approximations in 

(21) and (22): 

θ ≈ 0 and r ≈ z (24) 

which yields to: 

H (z,0)= 0  (25) 
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E (z,0)= − j
ηI dl

2πβ
jβ
z2 +

1

z3

 
 

 
 e

− jβ z a z  (26) 

 

In addition, by considering that we are interested in the field generated in a conductive medium 

instead of a dielectric medium, let us make the following intuitive substitutions: 

jβ = γ  (27.a) 

η =
γ
σ

 (27.b) 

where γ = jω µ σ  and σ  is the conductivity of the medium. Then, (26) reduces to: 

E (z,0)=
I h

2πσ
γ
z2 +

1

z3

 
 

 
 e

−γ z a z (28) 

Notice also that the infinitesimal current element length dl has been replaced with the segment 

length h. 

 

Finally, considering that: 

E z (z, r0)
z→ ∞

≈ E (z,0) (29) 

we can compute the desired approximation by replacing (28) into (23). By doing that we get: 

∆R(z)
z→ ∞ ≈

h

2πσ
γ I 2(z)+ I 3(z)[ ]=

h

2πσ
γ

e−γ z

z2 dz
z− h/ 2

z+ h/ 2

∫ +
e−γ z

z3 dz
z− h / 2

z+ h / 2

∫
 

  
 

  
 (30) 

 

Let us now compute (30). The integrals I2 and I3 can be found in any standard table of integrals. 

They are given by: 

I 2(x) =
eax

x2 dx = −∫
eax

x
+ a

eax

x
dx∫  (31.a) 

I 3(x) =
eax

x3 dx = −∫
eax

2x2 −
aeax

2x
+

a2

2

eax

x
dx∫  (31.b) 

where a new integral must be computed, and can also be found in tables. It is given by: 

I1(x) =
eax

x
dx∫ = ln x + a x +

a2 x2

2 2!
+

a3 x3

3 3!
+ ... (31.c) 
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By using (31.a) and (31.b) in (30) and arranging terms we obtain: 

∆R(z)
z→ ∞ ≈

h

2πσ
−

γ e− γ z

2 z
−

e−γ z

2 z2 −
γ2

2
I1(z)

 
  

 
  z− h / 2

z+ h / 2

 (32) 

where we are going to refer to the three terms inside the brackets, from left to right, as A(z), B(z) 

and C(z).  

 

Let us consider each term separately. Starting with A(z) we have that: 

A(z) = −
γ e−γ z

2 z
z−h / 2

z+h / 2

= −
γ
2

e− γ (z+ h / 2)

z + h /2
−

e−γ (z− h / 2)

z − h / 2

 
  

 
  
 (33.a) 

and after some algebraic manipulations: 

A(z) =
γ e−γ z

z2 − h2 / 4
z Sinh(γ h /2) +

h

2
Cosh(γ h /2) 

 
 
 
 (33.b) 

where some approximations can be done. As we are considering z large, it is reasonable to 

assume that z >> h, by doing so we can say that: 

z2 − h2 / 4 ≈ z2  (33.c) 

Also, let us assume that γh <1, which can be reasonable for a broad range of frequencies. By 

doing so, we can say that: 

Sinh(γ h/ 2) ≈ γ h/ 2 and Cosh(γ h/2) ≈1 (33.d) 

Then, by applying (33.c) and (33.d) to (33.b), we get: 

A(z)
z→ ∞ ≈ e− γ z γ2h

2z
+

γ h

2 z2

 
  

 
  
 (33.e) 

 

Next, let us compute the second term, which is given by: 

B(z)= −
e− γ z

2 z2

z− h / 2

z+ h / 2

= −
1

2

e− γ (z+ h / 2)

(z + h / 2)2 −
e− γ (z−h / 2)

(z − h / 2)2
 
  

 
  
 (34.a) 

and after some algebraic manipulations: 

B(z)=
e− γ z

(z2 − h2 / 4)2 z2 Sinh(γ h / 2)+ zh Cosh(γ h / 2)+
h2

4
Sinh(γ h /2)

 
  

 
  
 (34.b) 

By making again the same approximations given by (33.c) and (33.d), B(z) reduces to: 
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B(z)
z→∞ ≈ e− γ z γ h

2z2 +
h

z3 +
γ h3

8z4

 
  

 
  
 (34.c) 

 

The last term in (32) is given by: 

C(z) = −
γ 2

2
I1(z)

z−h / 2

z+ h/ 2

= −
γ2

2

e−γ z

z
dz

z− h / 2

z+ h / 2

∫  (35.a) 

where after applying (31.c), solving some powers and organizing terms, the following infinite 

series is obtained: 

C(z) = −
γ 2

2
ln

z+ h / 2

z− h / 2
− γ h +

γ 2 zh

2!
−

γ3 z2 h

3!
−

γ 3 h

12 3!
+

γ 4 z3h

4!
+

γ4 z h3

4 4!
−

γ 5z4 h

5!
− ...

 
  

 
  
 (35.b) 

Two approximations can be performed to (35.b). First, let us retain only the leading terms for 

every power of γ , which are defined by the highest powers of z. Again, this is justified because z 

is supposed to be large. In this way, (35.b) becomes: 

C(z)
z→ ∞ ≈ −

γ 2

2
ln

z + h / 2

z − h / 2
− γ h +

γ 2 z h

2!
−

γ 3z2 h

3!
+

γ 4 z3 h

4!
−

γ 5z4 h

5!
+ ...

 
  

 
  
 (35.c) 

For the second approximation, let us consider the following series expansion for the logarithm: 

ln y =
y −1

y
+

1

2

y −1

y

 
 
  

 

2

+ ... for y >1/2 (35.d) 

where, in this particular case, y = (z+h/2) / (z-h/2). Notice that, because of z >> h, the value of y 

will always be very close to 1; for this reason, we can use only the first term in (35.d) for 

approximating the logarithm in (35.c). Then, we will have: 

ln
z + h / 2

z − h / 2
z→ ∞

≈

z + h/ 2

z − h / 2
− 1

z + h / 2

z − h / 2

=
z + h /2− z + h / 2

z + h / 2
=

h

z + h /2
 (35.e) 

By using again the fact that z >> h, it is possible to simplify (35.e) further more. By doing so, 

(35.e) reduces to: 

ln
z + h / 2

z − h / 2
z→ ∞

≈
h

z + h / 2
≈

h

z
 (35.f) 

Now, by replacing (35.f) into (35.c) we obtain: 
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C(z)
z→ ∞ ≈ −

γ 2

2

h

z
−

γ h

1!
+

γ 2 z h

2!
−

γ 3z2 h

3!
+ ...

 
  

 
  

= −
γ2h

2z
1−

γ z

1!
+

γ 2z2

2!
−

γ 3z3

3!
+ ...

 
  

 
  
 (35.g) 

where the series in brackets is clearly the exponential function. In this way, C(z) is given by: 

C(z)
z→ ∞ ≈ −

γ 2h

2z
e−γ z  (35.h) 

 

Finally, let us replace (33.e), (34.c) and (35.h) into (32) in order to get the asymptotic expansion 

of ∆R(z) we wanted to compute. After rearranging terms: 

∆R(z)
z→ ∞ ≈

h2

2πσ
γ
z2 +

1

z3 +
γ h2

8z4

 
  

 
  

e−γ z  (36) 

 

Notice that in the D.C. case γ = 0 and (36) reduces to: 

∆R(z)
z→ ∞ ≈

h2 z−3

2πσ
 (37) 

which, except for the sign, is the same result obtained in (20) by using the Mellin Transform 

Method. 

 

 

CONCLUSIONS 

 

Although we actually found an asymptotic expansion for the potential difference integral, it is 

only valid for the homogeneous problem. It seems to be no way for computing an expansion for 

the general non-homogeneous case. For this reason, the use of asymptotic approximations cannot 

be considered as an alternative for solving the time harmonic field electric logging problem. 

 

Nevertheless, the knowledge of (36) is of great importance for understanding the physics and the 

properties of the time harmonic field electric logging problem. Also, (36) can be used as a 

reference for validating the results of the electric logging algorithms when considering an homo-

geneous earthen formation. 
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