Asymptotic Approximation for the Potential Difference Integral
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INTRODUCTION

This report presents an attempt to compute an asyimppproximation for the integral involved
in the solution of the time harmonic field electldgging problem presented in [1]. Due to the
huge computation time required to evaluate thagral by conventional procedures, and due to
the failure of more advanced integration techniqueg are attempting to find such
approximation. The availability of an asymptoticpegximation not only would simplify the

numerical solution of the problem, but also wouddphfor a better understanding of the problem.

FIRST ATTEMPT: THE MELLIN TRANSFORM METHOD

The integral we are interested in computing isgmésd in [1] and is given by:
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whereR=R(\)=+yN\* +jwua, r, is the radius of the logging tool, h is the segnength,w is
the angular frequency of operatienis the conductivityr is the reflection coefficient and bnd

Ko are the zero order Modified Bessel functions @t fand second kind.

For simplicity, let us first consider the homogeme@roblem in whichl'; is equal to zero. So,

(1) becomes:
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What we basically want to do is to find an approiion ofAR(z) for large values of z.



The integral in (2) belongs to a general classt&grals of the form:

I(2) = [T(A) h(zg(A)) dA (3)
where:
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According to the Mellin Transform Method [2], th@gsible critical points for an asymptotic
expansion of (3) are given by:

* The endpoints of integration; thatis= 0 and\ = .

* Those values of whereg(A) or f(A) are not infinitely differentiable.

* Those values of where¢(A) or its derivative vanish, which happens to be at0.
It is clear from (2) thakt =« is not a critical point. That is because (6) datglk faster and faster
whenx goes to infinity. So, the contributions to thedlivalue of the integral are smalleraas

increases. Then, the only critical point seemsetv 5 0.

By following the procedure described in [2], a pblesexpansion can be given by:
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where the coefficients,gand g, are defined in [2] and[h;s] is the Mellin Transform of h(t),
which in our case is given by:
M[Coqt);s] =T (9 Coqms/2) (8)

whererl (s) is the gamma function.

The approximation given by (7) can be simplifiegm® more by assuming:
f(A), ,=YoN° and @A), ,=a A" a,v,>0 9)



If (9) holds, then (7) becomes:
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By using (8) andx, = v, =1, which follows from (5) and (9), into (10) we get:

2], .. =277y T(1+ ) Costul + o)/ 2) (11)

It still remains to verify if the function given i@) can be expressed as in (9). If that happens to

be the case, then (11) would be the approximatiemans looking for.

First, let us consider the D.C. case, in whichN3&and (4) becomes:
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By using the following approximations:
KoX), , =-Inx, (13.a)
: 1
Ko, _, = L (13.b)
and Sin(x), , = x (13.c)
we get:
h’r, .
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where it is evident thatX{ cannot be expressed as in (9). Therefore theoappation given by

(11) cannot be used.

Now, let us see if (11) could be valid for the higbquency case. For a very high frequency, it

can be seen thaﬂszy=,/jwu0 . Then, f§) is given by constant and (11) reduces to zero.
Again, the approximation given by (11) cannot bedus



There is still another simplification for (7) whemnnctions with logarithmic behavior are
involved. Notice from (14) that in the D.C. cas@) fpresents a logarithmic behavior for> 0.
Again, by following the procedure described in [Rf(A) can be approximated by:
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then the asymptotic expansion given by (7) redtwes
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By comparing (14) with (15) we obtain:
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Now, by using (8), we can compute the terms in.(T6gy are:

M[h;1+p,] =M[h;3]=T(3) Co(3n/2)=0 (18.a)
d d [ d | . }
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ds =3 2
By replacing (17) and (18) into (16):
_ 3,-3
(), . =T (19)
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Finally, an asymptotic expansion faR(z) is obtained by substituting (19) into (2):
_hz Z—3
AR(z), . = (20)
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Notice that this approximation is only valid foethomogeneous D.C. case.



SECOND ATTEMPT: THE ELECTRIC DIPOLE

After inspecting (20), its great similarity to tifier field generated by an electric dipole can be
noticed. For this reason, we are going to attempéw approximation of (2) starting from the

field generated by an electric dipole.

The magnetic and electric fields generated in amdgeneous dielectric medium by a

infinitesimal current element of length dl and sgth | Cos¢t) are given by:

H( e(p)_ (JB 1)elﬁra¢ (21)
E(r.8, )——”'d'c se(JE 1)elﬂfa—j2'—:}3'sme[—ﬁ ‘B 1) e’ g, (22)

wheref=wype and n=4p/e.

A full description of how these fields are compuitegresented in [3].

Now, we are interested in approximatl(z). It can be verified from [1], that the expriessfor

AR(z) given in (2) was obtained from the followingfidition:
z+h/2
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whereE, (z, 1) is the z component of the electric field generdgthe current element along the

tool surface, | is its current strength and h esskgment length.

By considering that the expansion we are lookingi$ofor large values of z and that is
relatively small compared to those values of z,cae make the following approximations in
(21) and (22):

0=0 anc r=z (24)
which yields to:

H(z,0)=0 (25)
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In addition, by considering that we are interestethe field generated in a conductive medium

instead of a dielectric medium, let us make the¥ahg intuitive substitutions:

iB=y (27.2)
n=1 (27.b)
o
wherey :,/joopo ando is the conductivity of the medium. Then, (26) reelito:
- lh (y 1) 7=
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Notice also that the infinitesimal current elemiamtgth dl has been replaced with the segment

length h.

Finally, considering that:

E @), . =Ez0) (29)
we can compute the desired approximation by repia(d8) into (23). By doing that we get:
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Let us now compute (30). The integralsahd § can be found in any standard table of integrals.

They are given by:

eaX eax a X
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eaX eaX aeax a2 eaX
[,(X)=|—5 dx=- - +— dx 31lb
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where a new integral must be computed, and carbal$ound in tables. It is given by:
eax a.2)(2 a3x3
[,(X)=|—dx=Inx|+ax+ + + .. 31l.c
(9=[= X >33 (3L.c)



By using (31.a) and (31.b) in (30) and arrangimgigewe obtain:
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where we are going to refer to the three termslethe brackets, from left to right, as A(z), B(z)
and C(2).

Let us consider each term separately. Starting A{#) we have that:

—yz[z+h/2 Cy(z+h/2) —y(z-h/2)
Ay =-YE Tyl _£ 1 (33.3)
2z |, 2Lz+h/2 z-hi2]
and after some algebraic manipulations:
yer: [« h |
A(z) =——=—zSinhf{yh/2)+— Cosh{h/2 33.b
(2) =2 =577 |2 Sinhh/2)+= Coshih/2), (33.0)

where some approximations can be done. As we arsid®ring z large, it is reasonable to
assume that z >> h, by doing so we can say that:

Z-hW14=7 (33.c)
Also, let us assume thgh <1, which can be reasonable for a broad randeegtiencies. By

doing so, we can say that:

Sink(yh/2)=yh/2 anc Coslkyh/2)=1 (33.d)
Then, by applying (33.c) and (33.d) to (33.b), wé& g
.1 ¥?h yhl
A =gV | —+-—= 33.
(Z)Izﬂe0 27 222J (33.e)

Next, let us compute the second term, which isrglwe

+h/2
ez 2 1 r e—y(z+h/2) e—y(z—h/z) ‘|
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(34.3)
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and after some algebraic manipulations:
B(Z)=—_yz rz2 Sinh(yh/2)+ zh Coshgh/2)+ i Sinh(yh/2)—| (34.b)
(ZZ _ h2 /4)2 L 4 J .

By making again the same approximations given Byc{j3and (33.d), B(z) reduces to:
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The last term in (32) is given by:
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where after applying (31.c), solving some powerd arganizing terms, the following infinite

series is obtained:
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Two approximations can be performed to (35.b).tFlet us retain only the leading terms for
every power ofy , which are defined by the highest powers of z.iAgthis is justified because z

is supposed to be large. In this way, (35.b) besome
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For the second approximation, let us considerahleviing series expansion for the logarithm:
Iny—y 1 1(y 1\ +.. fory>1/2 (35.d)
y 2y

where, in this particular case, y = (z+h/2) / (2)hNotice that, because of z >> h, the value of y
will always be very close to 1; for this reason, wan use only the first term in (35.d) for

approximating the logarithm in (35.c). Then, wel\vdve:
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By using again the fact that z >> h, it is possitdesimplify (35.e) further more. By doing so,
(35.e) reduces to:
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Now, by replacing (35.f) into (35.c) we obtain:
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where the series in brackets is clearly the expialdanction. In this way, C(z) is given by:
2
ca, =Yg (35.h)
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Finally, let us replace (33.e), (34.c) and (35t i(32) in order to get the asymptotic expansion
of AR(z) we wanted to compute. After rearranging terms:
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Notice that in the D.C. cage= 0 and (36) reduces to:
hz3
" 210

AR(z) (37)
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which, except for the sign, is the same resultiobthin (20) by using the Mellin Transform
Method.

CONCLUSIONS

Although we actually found an asymptotic expandionthe potential difference integral, it is
only valid for the homogeneous problem. It seememo way for computing an expansion for
the general non-homogeneous case. For this retisose of asymptotic approximations cannot

be considered as an alternative for solving the trarmonic field electric logging problem.

Nevertheless, the knowledge of (36) is of greatartamce for understanding the physics and the
properties of the time harmonic field electric logg problem. Also, (36) can be used as a
reference for validating the results of the eledibgging algorithms when considering an homo-

geneous earthen formation.
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