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INTRODUCTION 

 

The purpose of this report is to present a detailed analysis of the methodology used in an attempt 

to solve the integrals in the electric logging problem by using complex variable theory. Although 

this methodology happened to be theoretically suitable, in practice the behavior of the integrals 

and the residues when the operation frequency approaches the DC limit makes the method 

numerically irresolvable. 

 

 

INTEGRAL FOR COMPUTING THE POTENTIAL DIFFERENCES 

 

Figure 1 presents a current element in a conductive earthen formation composed by coaxial 

annular zones of constant electric parameters.  
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Figure 1: Current element and potential difference measurement. 

 

We are interested in computing the potential difference ∆P(z), generated by the current element, 

between the points (r0,z+h/2) and (r0,z-h/2) as illustrated in Figure 1. It is assumed that the 

current element and the formation present cylindrical geometry around the z axis. It can be 

verified from [1] that the potential difference ∆P(z), due to an element located at z = 0, is given 

by: 

∆P(z)=
2I

hr0σ1π
2 ß1

K0(ß1r0)

K0
' (ß1r0)

Sin3(λh /2)

λ3 e− jλz dλ
−∞

∞

∫  (1) 

where ß1 = ß1(λ ) = ± λ2 + γ1
2 = ± λ2 + jωµ (σ1 + jωε) , r0 is the radius of the logging tool, h 

is the segment length, ω is the tool angular frequency of operation,σ1 is the conductivity of the 

zone 1, I is the strength of the current element and K0 is the Modified Bessel function of second 

kind and order zero. 

 

In (1), the function K 0(ß1r0)/K 0
' (ß1r0) stands for the homogeneous problem (σ2 = σ1 in Figure 1). 

In general [1], it takes the form [K 0(ß1r0) + Γ1 I 0(ß1r0)] /[K 0
' (ß1r0) + Γ1 I0

' (ß1r0)] ; where I0 is the 
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modified bessel function of first kind and order zero, and Γ1 is the reflection factor in zone 1. 

Let’s denote this function as BR(ß,Γ) or simply BR(ß) in the homogeneous case. 

 

The numerical solution of (1) presents some difficulties because of the particular behavior of the 

integrand. Some simple and more involving integration methods have been tested with poor 

results. In the following sections the solution of (1) by using complex variable theory is 

presented. 

 

 

THE COMPLEX λλλλ PLANE 

 

Consider the multivalued function: 

β (λ) = ± λ2 + γ 2 = ± λ2 + jωµ(σ + jωε)  (2) 

Let us call λB the branch points of the function (the points where ß(λ) is univalued [2]). These 

points are given by those values of λ for which the argument of the square root in (2) is equal to 

zero. By factoring and equating to zero that argument, λB can be computed as follows: 

λ2 + jωµ (σ + jωε) = λ + − jωµ(σ + jωε)[ ] λ − − jωµ (σ + jωε)[ ] = 0 (3) 

⇒ λB = ± − jωµ (σ + jωε)  (4.a) 

or, by solving the square root: 

λB = ±
ωµ
2

( ω2ε2 + σ2 + ωε) − j
ωµ
2

( ω2ε2 + σ2 − ωε)
 

  
 

  
 (4.b) 

where it becomes clear that the function in (2) has two branch points. Let’s call them λB1 (when 

the plus sign is used) and λB2 (when the minus sign is used). Then, ß(λB1) = ß(λB2) = 0. 

 

Now, we have to define the branch cuts in order to choose the integration paths properly and 

assure we are performing all the integration on the same Riemann Sheet [2]. To do that, let us 

rewrite (3) in terms of the branch points as follows: 

β2 (λ) = β1 β2= β1 β2 exp(j(α1 + α2))  (5) 

where: 
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β1 = β1 (λ) = β1 exp(jα1) = λ − λB1 (6.a) 

β2 = β2 (λ) = β2 exp(jα 2) = λ − λB2  (6.b) 

so that the function ß(λ) can be expressed as: 

β (λ) = β1 β2 exp j
α1 +α 2

2
 
 

 
 = β exp(jα) (7) 

 

From (5), it follows that in order to stay on the same Riemann Sheet, the phase of ß2(λ) must be 

between π and -π; and then from (7), it follows that the phase of ß(λ) should be restricted 

between π/2 and -π/2. This condition can be achieved by locating the branch cuts in the 

geometric place: 

Imag[ß2(λ)] = 0  (8) 

By defining the new variables λR and λI as the real and imaginary parts of λ, we can rewrite (3) 

as: 

β2(λ) = λ2 + jωµ(σ + jωε) = λ R
2 − λI

2 − ω2µε + j(2λ Rλ I + ωµσ)  (9) 

and by applying (8) to (9) the geometric place mentioned above can be computed. It is given by 

the following hyperbola: 

λ R =
−ωµσ
2λI

 (10) 

Notice that this hyperbolic path includes the branch points λB1 and λB2 . 

 

By using (8) and (2), an expression for ß(λ) along the branch cuts is obtained, and it is given by: 

β(λ) = ± λR
2 − λI

2 − ω2µε = ±K β  (11) 

where λR and λI are related as in (10) and K can be either 1 or j depending if the amount inside 

the square root is positive or negative. Then, in order to satisfy the previously stated condition, 

the branch cuts have to be chosen in such a way that along them ß(λ) equates + j |ß|, that is where 

the amount inside the square root in (11) is negative. Figure 2 illustrates the location of the 

branch cuts on the complex λ plane and the phase of ß(λ) along them. 
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Figure 2: Location of the branch points and the branch cuts in the complex λ plane. 

 

Now we can define the complex integration paths and the integrals that have to be solved in order 

to compute the integral of interest (along the real axis). Figure 3 shows two closed integration 

paths (one on the upper semiplane and the other in the lower semiplane) and the integrals 

associated with them. 

 

By applying the Cauchy theorem to each of the two closed paths in Figure 3 we obtain: 

for Path1 (lower semiplane): I + IA + I1
− + I1

+ + IB = −2π j residues in region 1∑  (12.a) 

and for Path2 (upper semiplane): I+ Ic + I 2
− + I2

+ + ID = 2π j residues in region 2∑  (12.b) 

where I is the integral along the real axis we are interested in. 

 

The use of either Path1 or Path2 depends on the convergence of the integrals associated with the 

paths. If convergence is not achieved in any of those paths, the function to be integrated must be 

decomposed in terms in such a way that convergence is achieved when integrating each of the 
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terms separately along one of the two paths. In all the cases, the decomposition must be done 

such that either IA and IB or IC and ID vanish. 

 

         

Figure 3: Integration paths and integrals. 

 

 

THE POTENTIAL DIFFERENCE INTEGRAL IN THE COMPLEX PLANE 

 

It is clear at this moment that due to the sine cube factor, the integral in (1) will not converge 

neither in Path 2 nor in Path 1 of Figure 3. This is because the sine becomes unbounded when the 

imaginary part of λ goes to ∞ or -∞. For this reason it is required to decompose the sine function 

into a sum of complex exponentials and consider each case in a separate integral. 

 

By using the following trigonometric identity: 

Sin3θ =
1

4
3Sinθ − Sin3θ[ ]=

1

8j
3(ejθ − e− jθ ) − (ej3θ − e− j3θ )[ ] (13) 
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(1) can be rewritten as a sum of four integrals as follows: 

∆P(z)=
I

4 j h r0σ1π2 3I1(z) − 3I2(z)− I 3(z)+ I4(z)[ ] (14) 

where:  I1(z) =
β1BR(β1)

λ3 e− jλ(z− h / 2) dλ
−∞

∞

∫  

 I 2(z) =
β1BR(β1)

λ3 e− jλ(z+ h / 2) dλ
−∞

∞

∫  

 I 3(z) =
β1 BR(β1)

λ3 e− jλ(z−3h / 2 ) dλ
−∞

∞

∫  

 I 4(z)=
β1BR(β1)

λ3 e− jλ (z+ 3h / 2) dλ
−∞

∞

∫  

 

Notice that I1, I2 , I3 and I4 are integrals of the general form: 

I(z) =
f (λ)

λ3 e− jλ (z+k ) dλ
C
∫        for k = -3h/2, -h/2, h/2, 3h/2 (15) 

 

Two important considerations have to be done for this kind of integral: 

1.- There is a triple pole at λ=0, so its residue must be computed. 

2.- The integration path must be chosen so that the integral converges.  

 

The residue can be computed as: 

residue= R =
1

2!

d2

dλ2 f(λ) e− jλ (z+ k)[ ]λ →0
 (16) 

and it can be verified that for the homogeneous problem, it is given by: 

R = −
1

2

K0
2(γ r0)

K1
2(γ r0)

−1
 
 
  

 
 r0 +

2

γ
− γ (z + k)2

 
 
  

 
K 0(γ r0)

K1(γ r0)

 

  
 

  
 (17) 

where γ 2 = jωµ (σ + jωε) 

 

Notice that when ω -> 0 then |R| -> ∞. This fact constitutes the main limitation of this method. 
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Now let us consider the convergence of the integral. In order to achieve it, the real part of the 

argument of the exponential function must be negative. That argument can be separated into real 

and imaginary parts as follows: 

− j λ(z + k) = λ i (z + k) − j λr (z + k) (18) 

where λi  and λr are the imaginary and real parts of λ respectively. Notice that when (z+k) > 0, λi 

must be negative to achieve convergence, while when (z+k) < 0, λi must be positive. This 

provides the criteria for choosing between Path 1 and Path 2 in (12). This consideration not only 

ensures the convergence of the integrals, but also that IA, IB, IC and ID in (12.a) and (12.b) vanish. 

The following table presents the paths that must be used to computed the integrals I1, I2 , I3 and I4 

in (14) for different intervals of z. 

 

Table #1: Integration paths to be used for the integrals in different intervals of z. 

Integral Value of K z < -3h/2 (-3h/2 : -h/2) (-h/2 : h/2) (h/2 : 3h/2) z > 3h/2
I 1 K = -h/2 Path 2 Path 2 Path 2 Path 1 Path 1
I 2 K = h/2 Path 2 Path 2 Path 1 Path 1 Path 1
I 3 K = -3h/2 Path 2 Path 2 Path 2 Path 2 Path 1
I 4 K= 3h/2 Path 2 Path 1 Path 1 Path 1 Path 1  

 

There is still a final consideration that must be done. That is the fact that the poles are in the 

origin and both Path 1 and Path 2 pass through the origin. The solution of this problem is very 

simple, we just have to assume that the contour that follows the real axis passes below or above 

the singularity at λ = 0 and therefore the residue will only contribute to the integral in the upper 

or lower semiplane respectively. By assuming the contour passes below the singularity and 

following the integration criteria depicted in Table 1, equations (12.a) and (12.b) reduce to: 

for Path 1: I = − I1
− − I1

+ (19.a) 

and for Path 2: I = 2πjR − I 2
− − I 2

+  (19.b) 

where I refers to any of the four integrals in (14); R is the residue, which is given by (17) for the 

homogeneous case; and the remaining integrals are those along the branch cuts that were 

illustrated in Figure 3.  
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COMPUTATION OF THE INTEGRALS 

 

Finally, let us compute I1
+ , I1

− ,I 2
+ and I2

− . In fact some simplifications can be done due to the 

similitude among the integrals. 

 

First let us consider I1
+ : 

I1
+(z) = F+(λ) e− jλ(z+ k) dλ

C1
+
∫  (20) 

where F+ (λ) =
β1

λ3 BR β1r0( )=
j β1

λ3 BR j β1 r0( ) (21) 

Notice that (21) is true only for those values of λ along the hyperbolic paths (branch cuts) 

described by (10). Also, remember that the sign of ß1 must be chosen in order to satisfy the phase 

condition discussed two sections before. Figure 2 shows the appropriated sign for each of the 

integrals. 

 

By using (10) it is possible to express λ along the branch cuts as a function of its own imaginary 

part as follows: 

λ(λ i ) =
−ωµσ

2λi

+ jλ i  (22.a) 

and, 
dλ
dλ i

=
ωµσ
2λi

2 + j  (22.b) 

so (20) can be rewritten as: 

I1
+(z) = F+ λ(λi )( ) ωµσ

2λ i
2 + j

 
 
  

 
 e

j
ωµσ
2λ i

(z+ k)

eλ i (z+ k) dλi

λB1
i

−∞

∫  (23) 

where λ B1
i  is the imaginary part of the branch point λB1, which is given in (4.b). 

 

Proceeding in a similar way I1
−  can be computed. It is given by: 

I1
−(z) = F− λ(λ i )( ) ωµσ

2λ i
2 + j

 
 
  

 
 e

j
ωµσ
2λ i

(z+ k)

eλ i (z+ k) dλi

−∞

λB1
i

∫  (24) 
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where F− (λ) =
β1

λ3 BR β1r0( )=
− j β1

λ3 BR − j β1 r0( ) (25) 

By substituting (23) and (24) in (19.a) and combining the integrals we get: 

I = − I1
− − I1

+ = F λ(λi )( ) ωµσ
2λi

2 + j
 
 
  

 
 e

j
ωµσ
2λ i

(z+ k)

eλ i (z+k ) dλ i

λB 1
i

−∞

∫  (26) 

where Fλ(λi )( )= F− λ(λi )( )− F+ λ(λ i )( ) (27) 

 

 

By applying a similar analysis, (19.b) can be rewritten as follows: 

I = 2πjR − I 2
− − I 2

+ = 2πjR − F λ(λi )( ) ωµσ
2λ i

2 + j
 
 
  

 
 e

j
ωµσ
2λ i

(z+ k)

eλ i (z+k ) dλ i

λB 2
i

∞

∫  (28) 

where F λ(λi )( ) is the same as in (27). 

 

A final simplification can be done by remembering that in (28) it will always hold that (z+k) < 0. 

Remember that this was the convergence criteria used to generate Table 1. Therefore, in (28) it 

will always be true that (z+k) = - | z+k |; while in (26) it will be true that (z+k) = | z+k |. By using 

this properties and making the change of variables λi = -λi into (28) it can be verified that: 

− I1
− − I1

+ = − − I 2
− − I2

+( ) (29) 

 

Finally, by using (29), equations (26) and (28) can be combined into a single equation as follows: 

I(z) =n 2πjR + (−1)n F λ(λ i )( ) ωµσ
2λi

2 + j
 
 
  

 
 e

j
ωµσ
2λi

z+ k

eλ i z+ k dλ i

λ B1
i

−∞

∫  (30) 

where n must be set to 0 if we want to evaluate equation (26) or to 1 for evaluating (28). The 

criteria for setting n is the same criteria to select the paths described in Table 1; n=0 corresponds 

to Path 1 and n=1 to Path 2. 

 

The numerical evaluation of (30) should not present major difficulties because of the presence of 

the real exponential. A conventional numerical integration technique must be suitable [3]. 
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To compute the potential difference ∆P(z), (30) must be solved for the four values of k presented 

in (15) and the four results must be combined according to (14). 

 

 

CONCLUSIONS 

 

As it was noticed in (17), the value of the residue tends to infinity when the frequency of 

operation approaches to zero. This problem can be solved for the DC limit, but it will always be 

present for small values of ω > 0. Although in theory, when frequency approaches the DC case, 

the huge values of the residues cancel with the also huge values of the integrals, in the practice it 

is impossible to achieve good results due to numerical problems. This fact constitutes the main 

limitation of this methodology and makes its implementation worthless. 

 

Another limitation of this methodology is the computation of the residues for the general case. 

The residue given by (17) corresponds to the homogeneous problem. The computation of the 

residue for the non homogeneous problem is not as simple and direct as for the homogeneous. A 

recursive procedure that allows the computation of the derivatives required to obtain the residues 

must be developed. 

 

Finally, a numerical problem arises when computing the potential difference at values of z close 

to those four values of k presented in (15). In these cases the real exponential in (30) varies very 

slowly and the numerical integration becomes more time consuming. 
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