I ntegration in the Complex A Plane

Rafael E. Banchs

INTRODUCTION

The purpose of this report is to present a detaitelysis of the methodology used in an attempt
to solve the integrals in the electric logging peob by using complex variable theory. Although
this methodology happened to be theoretically bigtan practice the behavior of the integrals
and the residues when the operation frequency appes the DC limit makes the method

numerically irresolvable.

INTEGRAL FOR COMPUTING THE POTENTIAL DIFFERENCES

Figure 1 presents a current element in a conduaarthen formation composed by coaxial

annular zones of constant electric parameters.
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Figure 1: Current element and potential differemsasurement.

We are interested in computing the potential defifieeAP(z), generated by the current element,
between the points o(z+h/2) and @,z-h/2) as illustrated in Figure 1. It is assumbdt tthe
current element and the formation present cylirdirgpeometry around the z axis. It can be

verified from [1] that the potential differened>(z), due to an element located at z = 0, is given

by:

AP(z)= hri'nz I&Ko(ﬁlro) Sin*(Ah/2)

Ko®r) N

where B, = B,(A) = £4X° +y,” = £/’ +jwu (0, + jwe), 1, is the radius of the logging tool, h

is the segment lengthy is the tool angular frequency of operatiofis the conductivity of the

e ™ da (1)

zone 1, | is the strength of the current elementkmis the Modified Bessel function of second

kind and order zero.

In (1), the functionK ,(B,r,)/K,(B,r,) stands for the homogeneous probleaa; in Figure 1).
In general [1], it takes the forfiK ,(R,r,) + I, 1 ,(R,r)/[K o(Rr,) + T, I, (B,1,)]; where b is the
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modified bessel function of first kind and order@eandl; is the reflection factor in zone 1.

Let's denote this function as BR(por simply BR([3) in the homogeneous case.

The numerical solution of (1) presents some diffiea because of the particular behavior of the
integrand. Some simple and more involving integratmethods have been tested with poor
results. In the following sections the solution (@) by using complex variable theory is

presented.
THE COMPLEX A PLANE
Consider the multivalued function:

BON) =2y N +y” =4 N + jop (0 + jwe) )

Let us callxs the branch points of the function (the points vehB4) is univalued [2]). These

points are given by those valuesxdr which the argument of the square root in £&qual to

zero. By factoring and equating to zero that argume can be computed as follows:

N+ jan (0 +joe) =[A + J=jan(o +jwe) |[p -v=jou (o +jwe) | = 0 ®3)

= AB = */ — jol (0 + jWE) (4.a)

or, by solving the square root:
AB = iu%(‘/ w'e® +0° +we) —j J%(J w’e® +0° - WE) } (4.b)

where it becomes clear that the function in (2) twas branch points. Let’s call thers: (when

the plus sign is used) anek (when the minus sign is used). Thens(= R¢s2) = 0.

Now, we have to define the branch cuts in ordechoose the integration paths properly and
assure we are performing all the integration onséi@e Riemann Sheet [2]. To do that, let us
rewrite (3) in terms of the branch points as fokow

B* (A) =P B2=|Pu|B2| exp(j(1+a2)) )

where:



Br=PBr(\) =|Be| exp(jo) = A — As1 (6.a)
B2= P2 (A) =|Bz| exp(jor2) =A — Agz (6.b)

so that the function B) can be expressed as:

B(A) =4Ipdl[B2 exr(j‘“;‘“) =|Bl exp(jar) (7)

From (5), it follows that in order to stay on theTe Riemann Sheet, the phase %f)@must be
betweenn and «; and then from (7), it follows that the phase @)should be restricted
betweenn/2 and =/2. This condition can be achieved by locating tranch cuts in the
geometric place:

Imag[B()] = 0 (8)

By defining the new variables and), as the real and imaginary partsapfwe can rewrite (3)
as:

B7(A) =N+ jou(0 + jooe) =A 5" = A, — wpe + j(2A A, + wpi0) (9)
and by applying (8) to (9) the geometric place nogred above can be computed. It is given by
the following hyperbola:

—-WUo
Ag = 10
RN (10)

Notice that this hyperbolic path includes the bhapointsas1 andasz .

By using (8) and (2), an expression fox)l&long the branch cuts is obtained, and it ismgivg
BV =£4A" =\ - w'he = K| (11)

whereAg anda, are related as in (10) and K can be either 1dapending if the amount inside

the square root is positive or negative. Then,ralepoto satisfy the previously stated condition,
the branch cuts have to be chosen in such a waxltivag them (3() equates + |3, that is where
the amount inside the square root in (11) is negatrigure 2 illustrates the location of the

branch cuts on the complexlane and the phase oAR&long them.
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Figure 2: Location of the branch points and thabinacuts in the complexplane.

Now we can define the complex integration pathstaedntegrals that have to be solved in order
to compute the integral of interest (along the eeas). Figure 3 shows two closed integration
paths (one on the upper semiplane and the othénenlower semiplane) and the integrals

associated with them.

By applying the Cauchy theorem to each of the tleeexd paths in Figure 3 we obtain:
for Pathl (lower semiplane)+1a +117 +11" + I = —anZresidues in region 1 (12.a)

and for Path2 (upper semiplane)}tlic + 12~ +12" + Ip= anZresidues in region 2 (12.b)

where | is the integral along the real axis weiarerested in.

The use of either Pathl or Path2 depends on theeogence of the integrals associated with the
paths. If convergence is not achieved in any o$¢hpaths, the function to be integrated must be

decomposed in terms in such a way that convergsnaehieved when integrating each of the



terms separately along one of the two paths. Inhallcases, the decomposition must be done
such that eitherland k or Ic and b vanish.
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Figure 3: Integration paths and integrals.

THE POTENTIAL DIFFERENCE INTEGRAL IN THE COMPLEX PLANE

It is clear at this moment that due to the sineecfaztor, the integral in (1) will not converge
neither in Path 2 nor in Path 1 of Figure 3. Thib@écause the sine becomes unbounded when the
imaginary part oh goes tox or <o. For this reason it is required to decompose ithe fsinction

into a sum of complex exponentials and considehn ease in a separate integral.

By using the following trigonometric identity:

el oo Lo e e g
Sin' =~ [3Sirb - Sin3] _Ej[e,(ee -e”) (6% -] (13)



(1) can be rewritten as a sum of four integralfolisws:
AP(z )— n2[3| (2) -31,(z)-1,(2)+ 1,(2)] (14)
where:|l,(z) = J’% @ Nz=n12) 4y
1,(2) = J'BIB_F‘;(Bl) @ iA@hi2) g\

|3(Z) - j'oBl BR3(B1) e—j)\(z—3h/2) dA

|4(z): j@ @ M@+3n2) gy

Notice that{, I, , Iz and } are integrals of the general form:

I(2) = j % eMdn  fork =-3h/2, -h/2, h/2, 3h/2 (15)

Two important considerations have to be done fisrkind of integral:
1.- There is a triple pole at0, so its residue must be computed.

2.- The integration path must be chosen so thantegral converges.

The residue can be computed as:

== A (z+k)
residue= R = > d)\ [f()\) e ]MO (16)
and it can be verified that for the homogeneous$lpru, it is given by:
(K ]
r=-1[KoOrm) _1] o+ 2oy Kalve) a7
2| (K (yr) y J K,y

wherey?® = juw (0 + j )

Notice that wherm -> 0 then |R| -»0. This fact constitutes the main limitation of thiethod.



Now let us consider the convergence of the intedgmabrder to achieve it, the real part of the
argument of the exponential function must be nggafihat argument can be separated into real
and imaginary parts as follows:

—jAz+Kk)=A.(z+K) =]\, (2 +K) (18)
wherexi and)r are the imaginary and real partsaagspectively. Notice that when (z+k) >0,
must be negative to achieve convergence, while wlek) < 0, A must be positive. This
provides the criteria for choosing between Patind Rath 2 in (12). This consideration not only
ensures the convergence of the integrals, butthétda, Is, Ic and b in (12.a) and (12.b) vanish.
The following table presents the paths that musidssl to computed the integralsl} , 1 and k

in (14) for different intervals of z.

Table #1: Integration paths to be used for thegnatls in different intervals of z.

Integral | Value of K z <-3h/2 (-3h/2 : -h/2) (-h/2 : h/2) (h/2 : 3h/2) z>3h/2
1 K =-h/2 Path 2 Path 2 Path 2 Path 1 Path 1
12 K=h/2 Path 2 Path 2 Path 1 Path 1 Path 1
13 K =-3h/2 Path 2 Path 2 Path 2 Path 2 Path 1
1 4 K= 3h/2 Path 2 Path 1 Path 1 Path 1 Path 1

There is still a final consideration that must mnel That is the fact that the poles are in the
origin and both Path 1 and Path 2 pass througlorigen. The solution of this problem is very
simple, we just have to assume that the contourfefiaws the real axis passes below or above
the singularity ah = 0 and therefore the residue will only contribtdehe integral in the upper
or lower semiplane respectively. By assuming thetmar passes below the singularity and
following the integration criteria depicted in Tall, equations (12.a) and (12.b) reduce to:

for Path 1:1 = -1 -1, (19.9)
and for Path 2t = 2R -1, -1 (19.b)
where | refers to any of the four integrals in (1R)is the residue, which is given by (17) for the
homogeneous case; and the remaining integrals haxge talong the branch cuts that were

illustrated in Figure 3.



COMPUTATION OF THE INTEGRALS

Finally, let us computd,,l;,l;andl,. In fact some simplifications can be done duehe t

similitude among the integrals.

First let us considel; :

;(2)= [F'(\) e d (20)
G

whereF*(\) =% BR(Ber):% BR(j|[31] ro) (21)

Notice that (21) is true only for those valuesioflong the hyperbolic paths (branch cuts)
described by (10). Also, remember that the sigi @hust be chosen in order to satisfy the phase
condition discussed two sections before. Figurén@vs the appropriated sign for each of the

integrals.

By using (10) it is possible to expresslong the branch cuts as a function of its owngimery

part as follows:
~WHO

AN = +iA. 22.a
(M) === *+in (22.2)
and, X - QKO , (22.b)
d\, 2X
so (20) can be rewritten as:
22 (z+k)
I+ (Z)— J' £ ()\()\ ))((AZ)I.)J;S ] e i@k d)\i (23)
where)',, is the imaginary part of the branch poiat, which is given in (4.b).
Proceeding in a similar waly can be computed. It is given by:
Nay LT 54y
|- (Z)— J' F ()\()\ ))(wl-lo ] e 2M; e)\i(z+k) d)\l (24)



whereF~(A) :% BR(Ber)=% BR(-i|B,Ir,) (25)

By substituting (23) and (24) in (19.a) and comimnihe integrals we get:
- et WHT | .
l==1, -1 _)\{IF()\()\))( 2)\2i +JJ e

where RA(A))=F (A))-F (A®)) (27)

jeug

2 (z+k)
2o @it gy, (26)

By applying a similar analysis, (19.b) can be r&en as follows:

WHOo
2N\

. - + . P . j&Z)AE(ZJrk) A, (z+k
I=21R-1; -1, =21R - [ FAQ)) +jje?  eNEg), (28)
Koo

whereF(A(),)) is the same as in (27).

A final simplification can be done by rememberihgttin (28) it will always hold that (z+k) < O.
Remember that this was the convergence criterid tesgenerate Table 1. Therefore, in (28) it
will always be true that (z+k) = - | z+k |; while (26) it will be true that (z+k) = | z+k |. By ogi

this properties and making the change of variablesai into (28) it can be verified that:

-1 -1 ==(15-13) (29)

Finally, by using (29), equations (26) and (28) barcombined into a single equation as follows:

= 924k
I(2) =n2niR +(-1)" [ FAGM,)) (“’“" +j] en e g (30)

2X\
where n must be set to 0 if we want to evaluateaggu (26) or to 1 for evaluating (28). The

criteria for setting n is the same criteria to setbe paths described in Table 1; n=0 corresponds
to Path 1 and n=1 to Path 2.

The numerical evaluation of (30) should not preseajor difficulties because of the presence of

the real exponential. A conventional numericalgnétion technique must be suitable [3].
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To compute the potential differena®(z), (30) must be solved for the four values pfésented

in (15) and the four results must be combined atngrto (14).

CONCLUSIONS

As it was noticed in (17), the value of the residaads to infinity when the frequency of
operation approaches to zero. This problem carolved for the DC limit, but it will always be
present for small values af> 0. Although in theory, when frequency approadesDC case,
the huge values of the residues cancel with theetalge values of the integrals, in the practice it
is impossible to achieve good results due to nwakproblems. This fact constitutes the main

limitation of this methodology and makes its imp&ntation worthless.

Another limitation of this methodology is the contgion of the residues for the general case.
The residue given by (17) corresponds to the homemées problem. The computation of the
residue for the non homogeneous problem is noingsles and direct as for the homogeneous. A
recursive procedure that allows the computatiothefderivatives required to obtain the residues

must be developed.

Finally, a numerical problem arises when computhrgypotential difference at values of z close

to those four values of k presented in (15). Irs¢heases the real exponential in (30) varies very

slowly and the numerical integration becomes mione tonsuming.
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