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INTRODUCTION

This report describes a numerical integration tegle due to Anderson [1]. In this technique a
transform-type integral is converted, by an apgetprchange of variables, into a convolution-
type integral which is finally approximated by achete convolution. The main advantage of this
technique is given by its computational velocitgttis several orders of magnitude faster than
conventional integration techniques. However, thigegration technique is still an
approximation and its performance highly dependstlum behavior of the function to be

integrated. The best results are obtained for nemodecreasing continuos integrands [1].

In the solution of the time harmonic electric laygiproblem, the computation of theR’s
requires the evaluation of a Cosine Transform natef]. The suitability of the Anderson’s

technique for the numerical computation of thiggmal is to be evaluated.

THE CHANGE OF VARIABLES

Let us consider the general transform-type integral
I(z) = _[f()\) k(z\) dA (2)
0

where f(z) is the function to be integrated and ki§zhe transform kernel.

Now, let us consider the following change of valesb

A=g" (2.2)
z=¢' (2.b)
so that:



d\ = -€e“du (3)
u=-In(A) (4.8)
andv =1In(2) (4.b)

By applying (2.a), (2.b), (3) and (4) to (1); we:ge

I(e") = _ff(e‘“) ke")[-e]du (5)
and after multiplying both sides of (5) &y, and swapping the limits of integration:

e'I(e') = Tf(e‘”) [ kEe™)] du (6)

where it can be clearly seen that the integrab)nq a convolution-type integral.

THE DISCRETE CONVOLUTION

The convolution integral in (6) can be approximabgda discrete convolution. Notice from (6)

that the two functions to be convolved can be @efias follows:

fo(v) =f(e™) (@)
9.(v)=€"k(€") 8
whereg,(v) will always be the same for an specific kind @fnsform. For this reason, it will be

called the filter; whilef, (v) will be the input function.

By using the commutative property of the convolati6) can be evaluated by shifting the input
function instead of the filter. In this way, a deste version of (6) can be written as:

e'1(e) = 3 g,(%,) f.0¢, ~V) ©)

n=-o0

where the Xs are uniformly spaced samples of the integratiamable u in (6).



For practical purposes, the infinite impulse reggoaf the filter in (9) must be approximated by
a finite impulse response. As it will be shown fatbe impulse response obtained in the design

of this kind of filters decays in such a way thatan be truncated without problems.

Finally, a more appropriated expression for thegrdl 1(z) in (1) can be obtained from (9) by
using (2.b) and (4.b), expressing the input fumctio terms of the original function Xy and
considering a finite impulse response filter of befficients. Then, 1(z) is given by:

X, —In(z))

[CESPYICATCIND (10

FILTER DESIGN

As it was mentioned in the introduction, the santiof the time harmonic electric logging
problem involves the numerical evaluation of a @eslransform integral. Although there exist
very good filters available in the literature [&]pbrief discussion of the designing technique and a

simple design example are presented here for hetterstanding of the method.

Although it is kind of challenging, the design bfg kind of filters is conceptually very simple.
Starting from the general transform-type integraéspnted in (1) and following the same

procedure discussed before, equation (6) is olitaifteis expression can be rewritten as follows:

lo(v) =f. (V) LG, (V) (11)
wherel (V) is going to be referred as the output functionamldbe given by:
1(v)=€"I(e"), (12)

f,(v) is going to be referred as the input function asitlbe given by:
fo(v) =1(€™), (13)

g.(v) is the filter response we are interested in désggand the symbdi denotes convolution.

By Fourier transforming both sides of (11) and gsihe convolution property of the Fourier

Transform, we get:



O] =] de.w)] (14)

wherel][ ] is the Fourier Transform operator.

For a known input-output pair of functions, a filtean be designed by solving (14) E[ge(v)]

and taking the Inverse Fourier Transform. Thenjiigulse response af,(v) is given by:

L w1l
go(v)=0 lLH—]J (15)
f.v]
Notice from (15) that special care must be takeravoid division by zero. This is usually
achieved by selecting appropriate input and outputtions.
DESIGN EXAMPLE
Let us consider the Cosine Transform integral @éefiby:

I(2) = Tf()\) Cos(2\) dA (16)

First of all, we have to find a transformed paifuictions 1(z) and #) such that satisfy (16). An

appropriated pair is given by:

_1 (-Z%)
I(z) = > ex ) a7
f(A) = expTiX) (18)

Using (17) and (18) does not always yields to gbloer responses. It was found by Anderson
that the filter responses are improved when rapi#igreasing input and output functions are
used in the design [1]. For this reason, it isdyetd construct a more suitable transform pair
rather than (17) and (18). Starting from (17) ah8), and using the linearity of the Cosine

Transform, we can define a new pair of functions:



I(z) = Ya exp(;a 22) - % exp(;—?[ 22) (19)

2 am
f(A) = exp(_zﬂ AZ) - exp(_—bn AZ) (20)

where two independent design parameters, a anavb, lbeen introduced.

Next, a sampling periodsTs chosen and an abscissa vectpisxcomputed. So, the output and
input functions can be computed by replacing (18 §0) into (12) and (13) respectively.
Discrete output and input sequences are obtaineevhluating (12) and (13) at the abscissa
values given by the vectop.XThen, Discrete Fourier Transform subroutinesused to evaluate

(15) and obtain the impulse response of the filter.

In the procedure described by Anderson [1], a gneelé sampling periodlis used and a shift is
introduced, as a design parameter, in order toceedoe magnitude of the filter tails. Here, we
are going to omit this part of the procedure bygsghe following simple and intuitive argument.
Let us consider the filter response given by (&tidé that, in the case of an oscillatory kernel,
for increasing values of the argument the probighdf taking a sample in a zero crossing also
increases. Then, it should be easy to get a gosidrdéy slightly varying Taround its desired
value. So, in this example, we are going to usestdmpling period as the design parameter by

itself. For a more rigorous design, refer to thecedure described by Anderson in [1].

Now, let us present a simple design example foiltar fof 128 coefficients. The design
parameters to be considered were a, b and@hle initial value for the sampling period was teet

Ts = 0.5. Several experiments were run for differeadties of a and b. The shapes of the Fourier
Transform magnitudes and phases where observednaige was substantially reduced. The
values of a = sqrt@ and b = sqri/2) happened to be very appropriated. Once a awdrb
defined, another set of experiments were done iiclwé reconstruction error was measured for
the filters obtained while varyingsTA minimum of the error was found at ¥ 0.4358. Figure 1
presents step by step the computation of the diefriilter. For the definitive filter:

a=+y2m; b=4T/2, T,=0.4358; and x=nT, forn=-64,63,..,62,63 (21)
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Figure 1.a: Input and Output Functions.

Figure 1.b: Input Function Fourier Transform.

Figure 1.c: Output Function Fourier Transform.
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Figure 1.d: Filter Fourier Transform.

Figure 1.e: Filter Impulse Response.

The imaginary part of the filter impulse responb&amed is neglected for obvious reasons.

The filter response obtained in Figure 1.e candslun (10) for computing an arbitrary Cosine
Transform. However, as it was mentioned beforeptréormance of the filter will depend on the
behavior of the function to be integrated. In tpaticular case, because we used a sampling
period of 0.4358, the filter designed has a cui@fjuency of approximately 2.29. So, the filter
performance will degrade notoriously if the funatido be transformed presents frequency

components above that cutoff frequency.



In general, for smaller sampling periods the impukssponses will be better, but the design will
become more difficult; while for larger samplingriogls the design will be simpler but the
impulse response will be poorer. Also, it is getigraseful to use a vector,Xarger than the

desired impulse response. Then, the filter respoasée truncated to the desired length.

FILTER PERFORMANCE

As an example of the performance of the filter gesd above, let us consider the following

Cosine Transform:
I(z) = ojo[e‘A '2 cos(B\)] cos(z\) dA (22)

which analytic solution is known and is given by:

LLF a .\ a 1
2| 1+a2(@z-b)2 1+ai(z+bY]

I(2) = (23)

By using (10) to evaluate (22) and comparing th&ulteagainst (23), we can evaluate the

performance of the designed filter. Two examplespesented in Figure 2.

Figure 2.a presents the case in which the values=df and b = 0 are considered. Notice than in
this case the function to be transformed behaves gothe sense that decreases monotonicaly
with no oscillations. The performance for this fficase is relatively good. On the other hand,

Figure 2.b presents the case in which a =1 and5b a this second case, the function to be

transformed presents oscillations which frequescghove the filter cutoff value of 2.29. It is

clear that the filter performs very poorly.
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Figure 2.a: Filter Performance when transformimgaamotonic function.
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Figure 2.b: Filter Performance when transformingadaillating function.
THE TIME HARMONIC FIELD ELECTRIC LOGGING PROBLEM

Finally, let us consider the application of thiseigration technique for the solution of the time
harmonic electric logging problem described in jr this purpose, we are going to use a filter
designed by Anderson [1] which is much more aceutiadn the example presented before. The
filter we are going to use has 787 coefficients] arsampling period of 0.1. The integral we are
interested in evaluate is presented in [2] andbeawritten as:

4 [Ky(R 1) +1,1,(R 1) 1Sin*(Ah/2)
r,o, 1P !QLK'O(& AR S
wherel3, =B, (A) = im, r, is the radius of the logging tool, h is the segnength,w

is the angular frequency of operationis the conductivityl ; is the reflection coefficient and |

0

AR(z)=

Cos{z) dA (24)

and Ko are the zero order Modified Bessel functions it fand second kind.

Figure 3 evaluates the performance of the Andessoriegration technique in the solution of

(24). A solution computed by using the TrapezoidtiMe is presented as a reference. The

derivatives of both solutions are also presented.
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Figure 3: Electric Logging Problem Computation.

CONCLUSIONS

It can be concluded that the Anderson’s integrat@@hnique constitutes a very powerful method
to evaluate transform-type integrals. Its main adage is given by its computational speed.
However, it still constitutes an approximation amat always its performance is as good as

desired.

In the case of the time harmonic field electricjimgy problem, as it can be seen from Figure 3,
the performance of the technique may be considacedptable, but actually it is not as good as
expected. This can be due to the presence of asailb in the function to be integrated in (24).
More alternatives must be evaluated before decidsigg this integration technique for solving

the time harmonic field electric logging problem.
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