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INTRODUCTION 

 

This report describes a numerical integration technique due to Anderson [1]. In this technique a 

transform-type integral is converted, by an appropriate change of variables, into a convolution-

type integral which is finally approximated by a discrete convolution. The main advantage of this 

technique is given by its computational velocity that is several orders of magnitude faster than 

conventional integration techniques. However, this integration technique is still an 

approximation and its performance highly depends on the behavior of the function to be 

integrated. The best results are obtained for monotonic decreasing continuos integrands [1]. 

 

In the solution of the time harmonic electric logging problem, the computation of the ∆R’s 

requires the evaluation of a Cosine Transform integral [2]. The suitability of the Anderson’s 

technique for the numerical computation of this integral is to be evaluated. 

 

 

THE CHANGE OF VARIABLES  

 

Let us consider the general transform-type integral: 

I(z) = f(λ) k(zλ) dλ
0

∞

∫  (1) 

where f(z) is the function to be integrated and k(z) is the transform kernel. 

 

Now, let us consider the following change of variables: 

λ = e−u  (2.a) 

z = ev  (2.b) 

so that: 
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dλ = −e− u du (3) 

u = − ln(λ)  (4.a) 

and v = ln(z)  (4.b) 

 

By applying (2.a), (2.b), (3) and (4) to (1); we get: 

I(ev) = f(e−u) k(ev− u) −e−u[ ]du
∞

−∞

∫  (5) 

and after multiplying both sides of (5) by ev , and swapping the limits of integration: 

ev I(ev ) = f(e−u) ev−u k(ev− u)[ ]du
−∞

∞

∫  (6) 

where it can be clearly seen that the integral in (6) is a convolution-type integral. 

 

 

THE DISCRETE CONVOLUTION  

 

The convolution integral in (6) can be approximated by a discrete convolution. Notice from (6) 

that the two functions to be convolved can be defined as follows: 

fe(v) = f(e−v )  (7) 

ge(v) = ev k(ev)  (8) 

where ge(v)  will always be the same for an specific kind of transform. For this reason, it will be 

called the filter; while fe(v)  will be the input function. 

 

By using the commutative property of the convolution, (6) can be evaluated by shifting the input 

function instead of the filter. In this way, a discrete version of (6) can be written as: 

ev I(ev ) = ge(xn) fe(xn − v)
n= −∞

∞

∑  (9) 

where the xn’s are uniformly spaced samples of the integration variable u in (6). 
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For practical purposes, the infinite impulse response of the filter in (9) must be approximated by 

a finite impulse response. As it will be shown later, the impulse response obtained in the design 

of this kind of filters decays in such a way that it can be truncated without problems. 

 

Finally, a more appropriated expression for the integral I(z) in (1) can be obtained from (9) by 

using (2.b) and (4.b), expressing the input function in terms of the original function f(λ) and 

considering a finite impulse response filter of M coefficients. Then, I(z) is given by: 

I(z) =
1

z
ge(xn) f(e

xn −ln(z )( )
)

n=1

M

∑  (10) 

 

FILTER DESIGN  

 

As it was mentioned in the introduction, the solution of the time harmonic electric logging 

problem involves the numerical evaluation of a Cosine Transform integral. Although there exist 

very good filters available in the literature [1], a brief discussion of the designing technique and a 

simple design example are presented here for better understanding of the method. 

 

Although it is kind of challenging, the design of this kind of filters is conceptually very simple. 

Starting from the general transform-type integral presented in (1) and following the same 

procedure discussed before, equation (6) is obtained. This expression can be rewritten as follows: 

I e(v) = fe(v) ∗ ge(v)  (11) 

where I e(v) is going to be referred as the output function and will be given by: 

I e(v) = ev I(ev) , (12) 

fe(v)  is going to be referred as the input function and will be given by: 

fe(v) = f(e−v ) , (13) 

ge(v) is the filter response we are interested in designing and the symbol *  denotes convolution.  

 

By Fourier transforming both sides of (11) and using the convolution property of the Fourier 

Transform, we get: 
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ℑ Ie(v)[ ]= ℑ fe(v)[ ] ℑ ge(v)[ ] (14) 

where ℑ[ ] is the Fourier Transform operator. 

 

For a known input-output pair of functions, a filter can be designed by solving (14) for ℑ ge(v)[ ] 
and taking the Inverse Fourier Transform. Then, the impulse response of ge(v) is given by: 

ge(v) = ℑ−1 ℑ Ie(v)[ ]
ℑ fe(v)[ ]
 

  
 

  
 (15) 

 

Notice from (15) that special care must be taken to avoid division by zero. This is usually 

achieved by selecting appropriate input and output functions. 

 

 

DESIGN EXAMPLE  

 

Let us consider the Cosine Transform integral defined by: 

I(z) = f(λ) Cos(zλ) dλ
0

∞

∫  (16) 

 

First of all, we have to find a transformed pair of functions I(z) and f(λ) such that satisfy (16). An 

appropriated pair is given by: 

I(z) =
1

2
exp

−z2

4π
 
 
  

 
 (17) 

f( λ) = exp(−π λ2)  (18) 

 

Using (17) and (18) does not always yields to good filter responses. It was found by Anderson 

that the filter responses are improved when rapidly decreasing input and output functions are 

used in the design [1]. For this reason, it is better to construct a more suitable transform pair 

rather than (17) and (18). Starting from (17) and (18), and using the linearity of the Cosine 

Transform, we can define a new pair of functions: 
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I(z) =
a

2
exp

−a

4π
z2 

 
 
 −

b

2
exp

−b

4π
z2 

 
 
  (19) 

f( λ) = exp
−π
a

λ2 
 

 
 − exp

−π
b

λ2 
 

 
  (20) 

where two independent design parameters, a and b, have been introduced. 

 

Next, a sampling period Ts is chosen and an abscissa vector xn is computed. So, the output and 

input functions can be computed by replacing (19) and (20) into (12) and (13) respectively. 

Discrete output and input sequences are obtained by evaluating (12) and (13) at the abscissa 

values given by the vector xn. Then, Discrete Fourier Transform subroutines are used to evaluate 

(15) and obtain the impulse response of the filter.  

 

In the procedure described by Anderson [1], a predefined sampling period Ts is used and a shift is 

introduced, as a design parameter, in order to reduce the magnitude of the filter tails. Here, we 

are going to omit this part of the procedure by using the following simple and intuitive argument. 

Let us consider the filter response given by (8). Notice that, in the case of an oscillatory kernel, 

for increasing values of the argument the probability of taking a sample in a zero crossing also 

increases. Then, it should be easy to get a good design by slightly varying Ts around its desired 

value. So, in this example, we are going to use the sampling period as the design parameter by 

itself. For a more rigorous design, refer to the procedure described by Anderson in [1]. 

 

Now, let us present a simple design example for a filter of 128 coefficients. The design 

parameters to be considered were a, b and Ts. The initial value for the sampling period was set to 

Ts = 0.5. Several experiments were run for different values of a and b. The shapes of the Fourier 

Transform magnitudes and phases where observed until noise was substantially reduced. The 

values of a = sqrt(2π) and b = sqrt(π/2) happened to be very appropriated. Once a and b were 

defined, another set of experiments were done in which a reconstruction error was measured for 

the filters obtained while varying Ts. A minimum of the error was found at Ts = 0.4358. Figure 1 

presents step by step the computation of the definitive filter. For the definitive filter: 

a = 2π ; b = π / 2; Ts = 0.4358; and xn = nTs for n = −64,−63,...,62,63 (21) 
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Figure 1.a: Input and Output Functions. 
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Figure 1.b: Input Function Fourier Transform. 
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Figure 1.c: Output Function Fourier Transform. 
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Figure 1.d: Filter Fourier Transform. 
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Figure 1.e: Filter Impulse Response. 

 

The imaginary part of the filter impulse response obtained is neglected for obvious reasons.  

 

 

The filter response obtained in Figure 1.e can be used in (10) for computing an arbitrary Cosine 

Transform. However, as it was mentioned before, the performance of the filter will depend on the 

behavior of the function to be integrated. In this particular case, because we used a sampling 

period of 0.4358, the filter designed has a cutoff frequency of approximately 2.29. So, the filter 

performance will degrade notoriously if the function to be transformed presents frequency 

components above that cutoff frequency. 
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In general, for smaller sampling periods the impulse responses will be better, but the design will 

become more difficult; while for larger sampling periods the design will be simpler but the 

impulse response will be poorer. Also, it is generally useful to use a vector xn larger than the 

desired impulse response. Then, the filter response can be truncated to the desired length. 

 

 

FILTER PERFORMANCE  

 

As an example of the performance of the filter designed above, let us consider the following 

Cosine Transform: 

I(z) = [e−λ / a cos(bλ)] cos
0

∞

∫ (zλ) dλ  (22) 

which analytic solution is known and is given by: 

I(z) =
1

2

a

1+ a2 (z − b)2 +
a

1+ a2(z + b)2

 
  

 
  

 (23) 

 

By using (10) to evaluate (22) and comparing the result against (23), we can evaluate the 

performance of the designed filter. Two examples are presented in Figure 2. 

 

Figure 2.a presents the case in which the values of a =1 and b = 0 are considered. Notice than in 

this case the function to be transformed behaves good in the sense that decreases monotonicaly 

with no oscillations. The performance for this first case is relatively good. On the other hand, 

Figure 2.b presents the case in which a =1 and b = 5. In this second case, the function to be 

transformed presents oscillations which frequency is above the filter cutoff value of 2.29. It is 

clear that the filter performs very poorly. 
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Figure 2.a: Filter Performance when transforming a monotonic function. 
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Figure 2.b: Filter Performance when transforming an oscillating function. 

THE TIME HARMONIC FIELD ELECTRIC LOGGING PROBLEM  

 

Finally, let us consider the application of this integration technique for the solution of the time 

harmonic electric logging problem described in [2]. For this purpose, we are going to use a filter 

designed by Anderson [1] which is much more accurate than the example presented before. The 

filter we are going to use has 787 coefficients, and a sampling period of 0.1. The integral we are 

interested in evaluate is presented in [2] and can be written as: 

∆R(z) =
4

r0 σ1 hπ2 ß1

K0(ß1 r0) + Γ1 I 0(ß1 r0)

K0
' (ß1 r0) + Γ1 I 0

' (ß1 r0)

 

  
 

  0

∞

∫
Sin3(λh /2)

λ3 Cos(λz) dλ  (24) 

where ß1 = ß1(λ ) = ± λ2 + jωµ σ1 , r0  is the radius of the logging tool, h is the segment length, ω 

is the angular frequency of operation,σ1 is the conductivity, Γ1 is the reflection coefficient and I0  

and K0 are the zero order Modified Bessel functions of first and second kind. 

 

Figure 3 evaluates the performance of the Anderson’s integration technique in the solution of 

(24). A solution computed by using the Trapezoid Method is presented as a reference. The 

derivatives of both solutions are also presented. 
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Figure 3: Electric Logging Problem Computation. 

 

CONCLUSIONS 

 

It can be concluded that the Anderson’s integration technique constitutes a very powerful method 

to evaluate transform-type integrals. Its main advantage is given by its computational speed. 

However, it still constitutes an approximation and not always its performance is as good as 

desired.  

 

In the case of the time harmonic field electric logging problem, as it can be seen from Figure 3, 

the performance of the technique may be considered acceptable, but actually it is not as good as 

expected. This can be due to the presence of oscillations in the function to be integrated in (24). 

More alternatives must be evaluated before deciding using this integration technique for solving 

the time harmonic field electric logging problem. 
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